# 354.50-7 (79-) "109.71.

#### SECTION I.—AEROLOGY.

# FREE-AIR DATA IN SOUTHERN CALIFORNIA, JULY AND AUGUST, 1918.

By the Aerial Section-WM. R. BLAIR in Charge.

[Dated, Mount Weather, Va., May 26, 1914.]

The Astrophysical Observatory, of the Smithsonian Institution, and the Mount Weather Observatory of the Weather Bureau cooperating during July and August, 1913, made observations in southern California: (a) Of solar radiation at high levels, by means of a photographically recording pyrheliometer, carried by free balloons; (b) of the total moisture content of the air above Mount Wilson, by means of the spectroscope; (c) of nocturnal radiation, by means of the K. Angström compensation apparatus; (d) of the meteorological elements, air pressure, temperature, humidity and movement, at different altitudes by means of meteorographs, carried by free balloons at Avalon, and by captive balloons at Lone Pine and at the summit of Mount Whitney. The pyrheliometric observations have already been discussed by C. G. Abbot in Science, March 6, 1914. It is the purpose of this present paper to communicate more particularly the meteorological observations.

### (a) THE FREE BALLOON OBSERVATIONS.

Morning and evening ascensions were made on July 23 and 24, 1914, and thereafter daily ascensions until August 12, 1914—23 ascensions in all. When a pyrheliometer was taken up, in addition to the meteorograph, the ascension for the day was so timed that the highest point would be reached about noon. On other days the ascensions were made shortly after sunrise or just before sunset. Table 1 shows the number of balloons recovered, their landing points, and other information of general interest.

Table 1.—Statistics of sounding balloon flights from Avalon, Cal., during July and August, 1913.

|                                                             |                                                                                                                                     | Bal             | loons.                                                             |                                                                                                                                                                                                                                   | Hori-                           | Direc-                                                     | High-                                                                                                                          | Lowest                                                                      |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Date.                                                       | Hour.                                                                                                                               | Number.         | As-<br>cen-<br>sional<br>force.                                    | Landing point.                                                                                                                                                                                                                    | dis-<br>tance<br>trav-<br>eled. | tion<br>trav-<br>eled.                                     | alti-<br>tude<br>reach-<br>ed.                                                                                                 | pera-<br>ture<br>record-<br>ed.                                             |
| 1913<br>July 23                                             | 6:06 a                                                                                                                              | 2               | Kg.                                                                | Huntington Beach,<br>Cal.                                                                                                                                                                                                         | Km.<br>42                       | ne.                                                        | M.<br>25, 160                                                                                                                  | ° C.<br>-56.0                                                               |
| 24<br>26<br>27<br>28<br>29<br>30<br>31<br>Aug. 31<br>5<br>7 | 5:13 p<br>5:11 p<br>4:57 p<br>5:05 p<br>11:10 a<br>10:54 a<br>10:36 a<br>10:39 a<br>10:59 p<br>5:07 p<br>4:52 p<br>4:52 p<br>4:43 p | 222222 22222222 | 0.8<br>0.9<br>1.1<br>1.2<br>1.0<br>1.4<br>1.3<br>0.8<br>0.8<br>0.9 | Armada, Cal. San Diego, Cal. Oceanside, Cal. Chino, Cal. Los Angeles, Cal. Atmore's Ranch, Cal. Los Pasos Hills, Cal. New Hall, Cal. Inglewood, Cal. Downey, Cal Fullerton, Cal. Colton, Cal. Baldwin Park, Cal Baldwin Park, Cal | 70                              | ene. ese. e. n. nnw. nnw. n. | 20, 389<br>23, 870<br>19, 485<br>23, 066<br>32, 643<br>22, 294<br>23, 466<br>21, 302<br>17, 428<br>6, 442<br>14, 100<br>1, 976 | -55, 8 -64, 7 -62, 6 -60, 4 -53, 9 -58, 6 -67, 3 -67, 5 -25, 2 -43, 9 19, 3 |

All free balloons were started at Avalon, Santa Catalina Island, Cal. Because of the possibility of the instrument coming down in the ocean, balloons were sent up in pairs and with a float. This float weighed approximately 450 grams. Each balloon was filled until it would lift decidedly everything to be sent up except the float. The balloons were then attached to the system in such a way that when either of them burst it would detach itself from the system, which then sank to the earth's surface

with the remaining balloon. This device by which the balloons are connected with the system and which serves the purpose of releasing the burst balloon is shown in figure 1. It is made of spring brass wire of approximately 2.4 mm. diameter. The pressure of the springs B and C on the wire A at the points D and E is sufficient to prevent the rings from slipping off in case cord F or G becomes slack. The weight of the burst balloon or of what is left of it slips the ring off easily. Cords F and G must be so short that they will not twist above the device.



Fig. 3.—Relation between ascensional rates of balloons and air temperatures.

The balloons used were of thick rubber, similar to those used at Huron in the early autumn of 1910 and at Fort Omaha in the late winter of 1911 but not so large. They were filled with electrolytic hydrogen which had been compressed in steel cylinders.

The highest ascension of the series was made on July 30. This exceeds the previous highest ascension from this continent by more than two kilometers. The record

obtained in this ascension is shown in figure 2.

In seven of the ascensions from which records were returned the instrument was carried to an altitude of 18 or more kilometers above sea level. The temperatures recorded and the ascensional rates of the balloons have been averaged and compared in Table 2 and in figure 3.



Fig. 1.—Device for releasing burst balloon.



Fig. 2.—Record obtained in sounding balloon ascension of July 30, 1913.

Table 2.—Temperatures recorded at different altitudes and ascensional rates of balloons for sounding balloon ascensions at Avalon, Cal., July and August, 1913.

| A1444 T-                                          | July                                                                 | 23.                                                                               | July                                                                                                                                                  | 7 24.                                                                                 | July                                                                                            | 27.                                                                                           | Jul                                                                                                                                                      | y 30.                                                                                                                       | July                                                                                                                          | 7 31.                                                                                                     | Au                                                                                  | g. 1.                                                                                                            | Au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g. 3.                                                                                              | Mea                                                                                             | ans.                                                                                    | Altitude          |
|---------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------|
| Altitude<br>above<br>surface.                     | Rate of ascent.                                                      | Tem-<br>pera-<br>ture.                                                            | Rate of ascent.                                                                                                                                       | Tem-<br>pera-<br>ture.                                                                | Rate of ascent.                                                                                 | Tem-<br>pera-<br>ture.                                                                        | Rate of ascent.                                                                                                                                          | Tem-<br>pera-<br>ture.                                                                                                      | Rate of ascent.                                                                                                               | Tem-<br>pera-<br>ture.                                                                                    | Rate of ascent.                                                                     | Tem-<br>pera-<br>ture.                                                                                           | Rate of ascent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tem-<br>pera-<br>ture.                                                                             | Rate of ascent.                                                                                 | Tem-<br>pera-<br>ture.                                                                  | above<br>surface, |
| Km.  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | M, p. s. 4.02 4.17 4.44 4.63 4.76 4.90 4.90 5.56 4.17 4.63 5.33 6.39 | °C. 18.5 12.6 5.5 -1.0 -7.9 -14.7 -21.6 -29.1 -34.3 -38.8 -41.4 -46.5 -50.6 -56.8 | M, p. s. 3. 3. 3. 3. 3. 5. 3. 3. 5. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 12 2. 95 3. 06 3. 21 3. 3. 7. 3. 5. 5. 3. 7. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. | °C. 14.6 14.7 8.1 2.4 4 - 2.8 -16.3 -20.8 -26.3 -31.7 -38.2 4 -45.5 -46.6 -49.6 -55.6 | M. p. s. 3. 3. 27 3. 27 3. 27 3. 33 3. 44 3. 40 3. 43 3. 37 3. 37 3. 37 3. 48 4. 57 3. 47 3. 47 | °C. 13.3 9.6 2.5 -4.7 -13.3 -20.5 -29.0 -38.4 -45.1 -50.2 -57.5 -58.7 -61.5 -62.2 -63.0 -60.8 | M. p. s.<br>1. 58<br>1. 55<br>1. 63<br>1. 81<br>2. 12<br>2. 25<br>2. 27<br>2. 92<br>3. 44<br>3. 83<br>4. 93<br>4. 93<br>4. 93<br>4. 93<br>4. 93<br>6. 13 | *C. 18. 2 20. 3 18. 5 20. 3 18. 5 3. 8 - 3. 6 3. 8 - 3. 6 3. 9 - 30. 2 - 37 - 44. 2 - 49. 1 - 51. 3 - 49. 8 - 49. 8 - 53. 0 | M. p. s.<br>3. 97<br>4. 17<br>4. 23<br>4. 44<br>4. 76<br>5. 65<br>5. 65<br>6. 41<br>6. 64<br>6. 67<br>6. 80<br>6. 80<br>6. 95 | *C. 21.6 18.7 12.8 5.8 — 1.5 — 11.3 6 — 23.6 6 — 34.6 6 — 42.2 — 47.4 4 — 55.3 6 — 56.7 7 — 58.6 9 — 58.0 | M. p. s. 2.78 2.90 3.03 3.17 3.40 3.51 3.62 3.79 4.12 4.17 4.12 4.17 3.88 4.22 4.83 | °C. 24. 2 18. 3 10. 9 3. 6 — 1. 6 — 1. 5 — 30. 0 36. 6 — 43. 2 — 49. 4 — 52. 3 — 49. 8 — 56. 8 0 — 56. 0 — 58. 0 | M. p. s. 2. 90 3. 03 3. 06 3. 09 3. 27 3. 12 3. 14 3. 33 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. 37 3. | °C. 30.0 21.8 14.6 7.3 -0.5 -8.2 -17.0 -24.5 -31.1 -36.8 -42.7 -49.2 -50.1 -54.0 -62.3 -62.3 -62.3 | M. p. s. 3. 10 3. 20 3. 32 3. 41 3. 52 2 3. 68 3. 80 4. 00 4. 106 4. 28 4. 46 4. 48 4. 68 4. 88 | °C. 20.1 18.6 10.4 3.5 -3.4 -11.8 -25.8 -32.0 -38.1 -43.4 -48.3 -51.1 -52.5 -54.3 -57.7 | <i>Km</i> .       |

The mean of the observed temperatures in the seven ascensions does not show a minimum of temperature below the 18-kilometer level. The mean of the ascensional rates of the balloons shows, in general, an increase with altitude. Above the 18-kilometer level the individual ascensions show a decrease in the ascensional rates of the balloons soon after the minimum of temperature has been passed through. This relation between the air temperature and the ascensional rate of the balloons is similar to that already found. (See Bull. Mount Weather Observatory, Washington, 1911, 4: 186.) It indicates that, in addition to the known factors entering into the ascensional rate of any balloon, there is the unknown factor of the difference in temperature between the gas in the balloon and the air through which the balloon is passing. While the temperature distribution in the free air is in general known, it would be impossible to predict, with sufficient accuracy for a particular ascension, the point of maximum ascensional rate or minor variations in the rate. On the other hand, careful observation of the ascensional rate of a free, sealed, rubber balloon might indicate fairly well the peculiarities of the temperature distribution at the time of the ascension. In this connection the author calls attention to an entirely erroneous statement in Bulletin of the Mount Weather Observatory, 4:186, regarding the adiabatic cooling of hydrogen gas. The approximate rate of cooling per kilometer came in some way to be considered the rate to the 15-kilometer level. The statement based on this error should not have appeared, nor is it needed to account for the observed peculiarities in the ascensional rate of free rubber balloons under consideration.

The instruments used were the same as those used in previous series of soundings. The calibration of the instruments was similar to that for previous series, except that the pressure and temperature elements were calibrated in a smaller chamber in which ventilation and temperature were under somewhat better control and in which temperatures down to  $-60^{\circ}$  C. could easily be obtained. (See Bulletin Mount Weather Observatory, Washington, 1911, 4:187.)

The data obtained in each ascension are presented in Table 4 with interpolations at the 500-meter intervals up to 5 kilometers above sea level, and at 1-kilometer intervals above the 5-kilometer level. In figure 4 a diagram of the temperature-altitude relation is shown for each observation. Figure 5 shows the mean value of this relation for the period. The free air isotherms for the period are

shown in figure 6. The horizontal projections of the balloon paths, as far as they could be observed, are shown in figure 7. Only one theodolite was used, the altitudes being computed from the observed air pressures.

An inversion of temperature, with the maximum temperature somewhere between the ½- and 2-kilometer levels, is shown in each curve of figure 4. This inversion of temperature is found, whether the observation be made in the morning, near noon, or in the late afternoon. It does not seem to accompany any particular wind direction. A similar inversion of temperature was observed in most of the ascensions made at Indianapolis, Fort Omaha, and Huron.

As shown in figure 5, the altitude at which the mean temperature for the period is a minimum is 17 kilometers. The minimum temperature observed in any ascension may be more than a kilometer above or below the height of this mean. In two ascensions, those of the 23d and 27th of July, the change of temperature with altitude begins to decrease at about the 8-kilometer level, while in the ascensions of August 2 and 3 this change does not take place until the 12-kilometer level. The temperature change from day to day is best shown in figure 6. The lowest temperature observed, -67.5°C., was at about the 16.5 kilometer level on August 3. About the same temperature had been observed at the 16-kilometer level on the day before.

A comparison of the curve shown in figure 5 with that shown in the Bulletin of the Mount Weather Observatory, 4: 302, figure 31, shows the surface temperature indicated in figure 5 higher by 6.4°C., the minimum temperature lower by 3.5°C., the maximum next above this minimum less than 2°C. lower than the corresponding values shown in figure 31. The minimum temperature shown in figure 5 occurs at an altitude higher by 1.5 kilometers than that shown in figure 31. The maximum temperature next above the minimum temperature is shown at about the same altitude in both curves. The curves have the same general appearance. That shown in figure 5 represents summer conditions at latitude 33° N. That shown in figure 31 represents conditions in all seasons, to some extent; the late summer and early autumn being better represented than the other seasons, at about latitute 40° N.

The variations of humidity with altitude and from day to day are rather closely related to the variations of temperature. In Table 3 the absolute humidities observed have been assembled and a mean shown.



Fig. 4.—Vertical temperature gradients at Avalon, Cal., July 23-August 10, 1913.

TABLE 3.—Absolute humidity (grams per cubic meter) at various levels on different dates, Avalon, Cal., 1913.

| To do                                                                 |                                                                                                                                                         |                                                                                                                  |                                                                                                                                            | •                                                                                                        | _                                                                                                                                        | -                                                                                                          |                                                                                                            |                                                                                                            | Alti                                                                                                                 | tude (me                                                                                                             | eters).                                                                                                    |                                                                                        |                                                                                        |                                                                                        |                                                                                        | •                                                                            |                                                                                        |                                                                              |                                                                              |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Date.                                                                 | 34                                                                                                                                                      | 500                                                                                                              | 1,000                                                                                                                                      | 1,500                                                                                                    | 2,000                                                                                                                                    | 2,500                                                                                                      | 3,000                                                                                                      | 3,500                                                                                                      | 4,000                                                                                                                | 4,500                                                                                                                | 5,000.                                                                                                     | 6,000.                                                                                 | 7,000.                                                                                 | 8,000.                                                                                 | 9,000.                                                                                 | 10,000.                                                                      | 11,000.                                                                                | 12,000.                                                                      | 13,000.                                                                      |
| 1913. Jt.ly 23. 24. 27. 28. 29. 30. 31. Aug. 1. 2. 3. 7. 8. 10. Means | 12. 651<br>11. 363<br>11. 949<br>10. 813<br>9. 933<br>12. 415<br>12. 352<br>15. 210<br>15. 817<br>15. 199<br>14. 482<br>12. \$23<br>12. \$27<br>12. 900 | 10. 109<br>9. 740<br>9. 687<br>8. 755<br>9. 372<br>11. 913<br>11. 261<br>12. 074<br>13. 779<br>11. 349<br>9. 937 | 9, 248<br>8, 808<br>8, 708<br>7, 980<br>8, 913<br>10, 625<br>8, 640<br>9, 369<br>7, 750<br>4, 205<br>6, 274<br>11, 336<br>4, 654<br>8, 193 | 0.942<br>7.562<br>7.288<br>5.330<br>5.418<br>4.717<br>8.072<br>2.631<br>9.476<br>5.925<br>2.631<br>9.476 | 5. 597<br>4. 993<br>5. 003<br>3. 642<br>4. 711<br>5. 922<br>2. 379<br>6. 661<br>5. 657<br>2. 850<br>1. 521<br>7. 983<br>2. 421<br>4. 565 | 4. 495<br>3. 371<br>2. 852<br>2. 985<br>3. 056<br>4. 108<br>1. 434<br>5. 459<br>2. 541<br>1. 256<br>6. 572 | 3. 354<br>2. 976<br>1. 661<br>2. 429<br>1. 964<br>2. 351<br>1. 444<br>4. 739<br>2. 109<br>1. 353<br>5. 055 | 2. 291<br>2. 329<br>1. 301<br>1. 480<br>1. 163<br>1. 381<br>1. 210<br>4. 278<br>1. 560<br>1. 300<br>3. 961 | 1. 608<br>1. 820<br>1. 064<br>1. 015<br>0. 674<br>0. 993<br>0. 855<br>3. 367<br>1. 840<br>1. 178<br>1. 005<br>3. 278 | 1. 106<br>1. 441<br>0. 839<br>0. 698<br>0. 384<br>0. 780<br>0. 580<br>2. 302<br>1. 243<br>0. 898<br>1. 299<br>2. 806 | 0. 793<br>1. 162<br>0. 581<br>0. 516<br>0. 205<br>0. 687<br>0. 344<br>1. 662<br>0. 922<br>1. 362<br>2. 368 | 0. 415<br>0. 289<br>0. 272<br>0. 112<br>0. 330<br>0. 193<br>0. 476<br>0. 432<br>1. 623 | 0. 207<br>0. 118<br>0. 125<br>0. 060<br>0. 219<br>0. 118<br>0. 406<br>0. 235<br>1. 180 | 0. 095<br>0. 040<br>0. 051<br>0. 019<br>0. 103<br>0. 062<br>0. 199<br>0. 105<br>0. 655 | 0. 055<br>0. 017<br>0. 023<br>0. 011<br>0. 048<br>0. 034<br>0. 103<br>0. 055<br>0. 346 | 0. 034<br>0. 009<br>0. 010<br>0. 006<br>0. 020<br>0. 014<br>0. 021<br>0. 215 | 0. 024<br>0. 035<br>0. 006<br>0. 005<br>0. 002<br>0. 010<br>0. 007<br>0. 026<br>0. 008 | 0. 019<br>0. 023<br>0. 003<br>0. 003<br>0. 004<br>0. 004<br>0. 003<br>0. 003 | 0. 013<br>0. 016<br>0. 003<br>0. 003<br>0. 003<br>0. 002<br>0. 009<br>0. 003 |
|                                                                       |                                                                                                                                                         |                                                                                                                  |                                                                                                                                            |                                                                                                          |                                                                                                                                          | ·                                                                                                          |                                                                                                            | <u>'</u>                                                                                                   | Alti                                                                                                                 | tude (me                                                                                                             | eters).                                                                                                    |                                                                                        | · · · · · · · · · · · · · · · · · · ·                                                  |                                                                                        | <u>'</u>                                                                               | <u>'</u>                                                                     | <u></u>                                                                                |                                                                              |                                                                              |
| Date.                                                                 | 14,000                                                                                                                                                  | 15,000                                                                                                           | 16,000                                                                                                                                     | 17,000                                                                                                   | 18,000                                                                                                                                   | 19,000                                                                                                     | 20,000                                                                                                     | 21,000                                                                                                     | 22,000                                                                                                               | 23,000                                                                                                               | 24,000                                                                                                     | 25,000                                                                                 | 26,000                                                                                 | 27,000                                                                                 | 28,000                                                                                 | 29,000                                                                       | 30,000                                                                                 | 31,000                                                                       | 32,000                                                                       |
| 1913. July 23                                                         | 0.008<br>0.013<br>0.903<br>0.003<br>0.002<br>0.002<br>0.012<br>2.003<br>0.033                                                                           | 0. 004<br>0. 010<br>0. 002<br>0. 001<br>0. 003<br>0. 003<br>0. 011<br>0. 004                                     | 0.004<br>0.007<br>0.001<br>0.001<br>0.002<br>0.002                                                                                         | 0.003<br>0.004<br>0.001<br>0.001<br>0.002<br>0.001<br>0.005                                              | 0.003<br>0.004<br>0.002<br>0.002<br>0.003<br>0.002<br>0.004                                                                              | 0.004<br>0.006<br>0.003<br>0.002<br>0.002<br>0.002<br>0.004                                                | 0.004<br>0.008<br>0.003<br>0.001<br>0.003<br>0.006                                                         | 0.006<br>0.003<br>0.002<br>0.004<br>0.006                                                                  | 0.007<br>0.004<br>0.002<br>0.005<br>0.007                                                                            | 0.005<br>0.002<br>0.008                                                                                              | 0. 014<br>0. 007<br>0. 002                                                                                 | 0.018                                                                                  | 0.004                                                                                  | 0.004                                                                                  | 0.005                                                                                  | 0.005                                                                        | 0.005                                                                                  | 0.006                                                                        | 0.006                                                                        |
| Means                                                                 | 0.009                                                                                                                                                   | 0. 005                                                                                                           | 0.003                                                                                                                                      | 0.002                                                                                                    | 0.003                                                                                                                                    | 0.003                                                                                                      | 0.004                                                                                                      | 0.004                                                                                                      | 0.005                                                                                                                | 0.006                                                                                                                | 0.008                                                                                                      | 0.010                                                                                  | 0.004                                                                                  | 0.004                                                                                  | 0.005                                                                                  | 0.005                                                                        | 0.005                                                                                  | 0.006                                                                        | 0.006                                                                        |

The distribution of pressure at the earth's surface changes but little in type, and that never abruptly, during the period of observation nor does the pressure itself vary much from day to day. Figures 7 and 8 show the pressure distribution in a general way for the whole

period. The positions of the centers of high and low pressure at 8 a.m. or 8 p.m., seventy-fifth meridian time, are shown by the circles, in which dates are also indicated. In the case of high pressure, these circles are connected by solid lines; in the case of low pressure, by dashed lines.



Fig. 5.—Curve showing mean temperature gradient at Avalon, Cal., July 23-August 3, 1913.

In three of the ascensions July 24 and 27 and August 3, the balloons were followed with the theodolite beyond the altitude at which the minimum temperature was recorded (see fig. 9). In another, August 2, the air movement could be observed up to 17 kilometers. On July 24 and 27 the winds were westerly, with a small south component up to the height at which the minimum temperature was found. Above this height the wind was easterly. On August 2 and 3 the winds were scutherly, with a small west component up to the point of minimum temperature. Here again the winds became easterly. On July 24 the wind velocity increased as the easterly component made its appearance; on July 27 there was little change; on August 2 and 3 there was a decided decrease in velocity as the wind became casterly.

Table 4.—Results of sounding balloon ascensions, Avalon, Cal.
JULY 23, 1913.

|                                                                                                                                                                        |                    |                  | Tem-             | !                            | Hum            | idity.                     |                                           | <sub>1</sub> |                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|------------------|------------------------------|----------------|----------------------------|-------------------------------------------|--------------|----------------------------------------------|
| Time.                                                                                                                                                                  | Alti-<br>tude.     | Pres-            | pera-<br>ture.   | 100 m.                       | Rel.           | Abs.                       | Direction.                                | Vel.         | Flama ks.                                    |
| А. М.                                                                                                                                                                  |                    |                  |                  |                              |                |                            |                                           | !            |                                              |
| h. m.<br>6 06.0<br>6 08.0                                                                                                                                              | M.<br>34           | Mm.<br>759.5     | ° C.<br>19. 3    | <sub>i.i</sub>               | P. ct.         | g./m³.<br>12, č51          |                                           | M.p.s.       | 10/10 S. NNW.  In base of clouds, Inversion. |
| 6 08.0                                                                                                                                                                 | 489<br>500         | 719.8            | 14.3<br>14.1     | 1.1                          | 83<br>84       | 10. 111<br>10. 1 <b>09</b> | N. 48° W<br>N. 47° W                      | 1.1<br>1.1   |                                              |
| 6 09.1                                                                                                                                                                 | l                  | l                | 12.4             | 0.8                          | 92             | 9.972                      | N. 17° W                                  | 1.0          | In base of clouds.                           |
|                                                                                                                                                                        | 1,000              | 475 0            | 18.5             | -2.2<br>0.4                  | 59<br>57       | 9.248                      |                                           | ļ <b>.</b>   | ii.version,                                  |
| 6 10.2<br>6 12.2                                                                                                                                                       | 1,454              | 642.3            | 17.1             | 0.4                          | 49             | 7.068                      |                                           |              |                                              |
|                                                                                                                                                                        | 1,500<br>2,000     |                  | 16.8             |                              | 51             | 5.597                      |                                           |              |                                              |
| 6 17.4                                                                                                                                                                 | 2,500<br>2,784     | 547.5            | 8.5              | 0.8                          | 53<br>54       | 4.495<br>  3.975           |                                           | 1            |                                              |
| 6 18.9                                                                                                                                                                 | 3,000<br>3,194     | 520.8            | 5. 5<br>4. 9     | 0.3                          | 48<br>43       | 3.351                      |                                           |              |                                              |
|                                                                                                                                                                        | 3,500              |                  | 2.5              |                              | 40<br>36       | 2. 291                     |                                           |              |                                              |
|                                                                                                                                                                        | 4,500              | 420 1            | - 4.6            |                              | 33             | 1.106                      |                                           |              |                                              |
| 6 24.8                                                                                                                                                                 | 4,818              | 424.7            | - 6.6            | 0.5                          | 31             | 0. 582                     |                                           |              |                                              |
|                                                                                                                                                                        | 6,000              |                  | -14. 7           |                              | 29             | 0. 193                     |                                           |              |                                              |
| 6 31.7                                                                                                                                                                 | 6,793<br>7,000     | 327.9            | -20.0<br>-21.6   | 0.7                          | 27<br>27       | 0. 241<br>0. 207           |                                           |              |                                              |
| 6 17.4<br>6 18.9<br>6 24.5<br>6 24.8<br>6 31.7<br>6 36.4<br>7 00.4<br>7 08.3<br>7 15.1<br>7 26.8<br>7 34.0<br>7 51.5<br>7 54.2<br>7 57.3<br>8 10.8<br>8 18.3<br>8 33.4 | 8,000              | 271.4            | -29.1<br>-30.5   | 0.8                          | 25<br>25       | 0.095                      |                                           |              |                                              |
|                                                                                                                                                                        | 9,000              |                  | -34.3<br>-38.8   |                              | 75<br>25       | 0.055<br>0.034             |                                           |              |                                              |
| 6 42.9                                                                                                                                                                 | 10, 289            | 200. 9           | -39. 8           | 0.4                          | 25             | 0.030                      |                                           |              |                                              |
| -11                                                                                                                                                                    | 12,000             |                  | -43.             |                              | 23             | 6.019                      |                                           |              |                                              |
| 6 50.4                                                                                                                                                                 | 13,000             | 143.8            | -44. t           | 0.2                          | 22             | 0.013                      |                                           |              |                                              |
|                                                                                                                                                                        | 14,000             |                  | -50.6<br>-54.8   | 3                            | 20             | 0.008                      |                                           |              |                                              |
| 7 00.4                                                                                                                                                                 | 15,092<br>16,000   | 98.6             | -55. 2<br>-55. 8 | 0.2                          | 20<br>20       | 0.004                      |                                           |              | ļ                                            |
| 7 08 3                                                                                                                                                                 | 17,000             | 60 2             | -56.6            | 0.1                          | 20             | 0.003                      |                                           |              | Inversion                                    |
| 7 00.0                                                                                                                                                                 | 18,000             |                  | -56.             |                              | 20             | 0.003                      |                                           |              |                                              |
| 7 15.1                                                                                                                                                                 | 19,000             | 46. 1            | -56.             | 0.0                          | 21             | 0.004                      |                                           |              |                                              |
|                                                                                                                                                                        | 20,000<br>21,000   | )<br>            | -53.             | 3                            | 22             | 0.004                      |                                           |              |                                              |
|                                                                                                                                                                        | 22,000<br>23,000   | )<br>            | -51.<br>-48.     | 2 <br>7 <sub> </sub>         | 22             | 0.007                      | ''<br>                                    | 1::::::      |                                              |
|                                                                                                                                                                        | 24,000<br>25,000   |                  | -46.3<br>-43.8   | i                            | 23             | 0.014                      |                                           | 1            |                                              |
| 7 26.8                                                                                                                                                                 | 25, 160<br>25, 000 | 21.5             | -43.             | -0.1                         | 23             | 0.019                      |                                           |              | İ                                            |
| 7 24 0                                                                                                                                                                 | 24,000             | 20               | -42.             | -0.1                         | 21<br>20       | 0.020                      |                                           |              |                                              |
| 7 04.0                                                                                                                                                                 | 23,000             |                  | -41.             | 2                            | 20             | 0.021                      |                                           |              |                                              |
| ******                                                                                                                                                                 | 22,000             | <u>.</u>         | -44.             | 2                            | 18             | 0.013                      |                                           | -            |                                              |
| 7 43.9                                                                                                                                                                 | 20,314             | 45.0             | -45.<br>-46.     | L                            | 17             | 0.011                      |                                           |              | ì                                            |
| 7 51.5                                                                                                                                                                 | 19,000             | 60.0             | -50.4<br>-52.5   | 5 O. 5                       | 17             | 0.000                      |                                           |              | Inversion.                                   |
| 7 54.2                                                                                                                                                                 | 18,000<br>17,85    | 65.3             | _50.6<br>_50.6   | 7                            | .  18<br>8: 18 | 0.000                      |                                           |              | 1                                            |
| 7 57.7                                                                                                                                                                 | 17, 25             | 71.7             | -52.             | 0.1                          | i, 18          | 0.005                      |                                           | . <br>.      | Inversion.                                   |
|                                                                                                                                                                        | 16,00              | jl               | -51.<br>-50      | i                            | 19             | 0.000                      | ,                                         |              |                                              |
| 8 10.9                                                                                                                                                                 | 14,28              | 112.             | -49.             | 8 0.4                        | i X            | 0.00                       | j                                         |              |                                              |
|                                                                                                                                                                        | 13,000             | Ď                | -44.             | 5                            | : :            | 0.01                       |                                           | -1           | 'I                                           |
| 8 18.3                                                                                                                                                                 | 12,80              | 3 144<br>0       | -43.0            | 5                            | 2              | 0.02                       | 3<br>                                     | -            | 1                                            |
|                                                                                                                                                                        | 11,00              | 0                | -38<br>-36.      | 4                            | 2              | 0.03                       | <u> </u>                                  | - <br>-      | ;}                                           |
| 8 31.8<br>8 33.                                                                                                                                                        | 9,85<br>9,53       | 5 214.<br>6 224. | 8 —36.<br>9 —37. | 0 -0.8<br>7 0.8              | 5 2            | 0.03                       | 2 <br>5                                   |              | Inversion.                                   |
| 8 37.9                                                                                                                                                                 | 9,00               | 7 254            | -33.<br>2 -31    | 5<br>0 0.3<br>8 0.4<br>4 0.1 | 8 2            | 0.05                       | 5<br>1<br>1<br>2<br>2<br>5<br>5<br>5<br>7 | :[:::::      | :                                            |
| 8 44.                                                                                                                                                                  | 8,00               | 300              | —25.<br>3—21     | 8                            | 5 2            | 0.12<br>0.20               | 9<br>7                                    |              | 1                                            |
| 8 50.0                                                                                                                                                                 | 7,00               | 0                | _ <u>19</u> .    | 4                            | . 2            | 8 0.26                     | 5<br>9                                    |              |                                              |
|                                                                                                                                                                        | . 0.00             | 0                | -10.<br>-13.     | 4 0.<br>8<br>7 0.            | 8 2            | 0.46                       | 4                                         |              | <u>' </u><br>'                               |
| 8 56.                                                                                                                                                                  | 5,00               | 8 413.<br>0      | 니_ 7:            | 4                            | 7¦ 3'          | 2 0.85                     | 2                                         |              | · <br>-1                                     |
|                                                                                                                                                                        | 4 50               | 0                | - 4.<br>- 0.     | 7 0.<br>4<br>0               | : 3<br>3       | 2 1.12<br>2 1.46           | 4                                         |              | :                                            |
| 9 02.3                                                                                                                                                                 | 3,79               | 4 483.           | 6 0.             | 6                            | - 3            | 2 1.61                     | <b>2</b>                                  | -            | -                                            |
|                                                                                                                                                                        | <u> </u>           |                  |                  |                              | 1              | <u> </u>                   | 1                                         | _ بـ ا       | 1                                            |



Fig. 6.—Free-air temperatures at Avalon, Cal., July 23-August 10, 1913.



Fig. 7.—Pressure distribution in the western United States, July 22-28, 1913.

415

Table 4.—Results of sounding balloon ascensions, Avalon, Cal.—Continued.

Table 4.—Results of sounding balloon ascensions, Avalon, Cal.—Continued.

JULY 27, 1913---Continued.

|                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                            |                                                                                                                                                                                       |                                                              | JULY                                                                                                      | 24, 1                                                                                                                                              | 913.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                        |                                                                                                                                                                                  | JOLY                                                   | <b>27,</b> 19                                                                                                                 | 913C                                                                                                                                                                                                                 | ontinued.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |                                       |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------|
|                                                                                                                      | Alti-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pres-                                                                                                      | Tem-                                                                                                                                                                                  | Δt                                                           | Hum                                                                                                       | idity.                                                                                                                                             | Wind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              | Time.                                                                                                                                               | Alti-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pres-                                                                                  | Tem-                                                                                                                                                                             | 4t                                                     | Hum                                                                                                                           | idity.                                                                                                                                                                                                               | Wind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                              | Remarks.                              |
| Time.                                                                                                                | tude.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sure.                                                                                                      | pera-<br>ture.                                                                                                                                                                        | 100 m.                                                       | Rel.                                                                                                      | Abs.                                                                                                                                               | Direction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Vel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Remarks.                     | 1 IIII 6.                                                                                                                                           | tude.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sure.                                                                                  | pera-<br>ture.                                                                                                                                                                   | 100 m.                                                 | Rel.                                                                                                                          | Abs.                                                                                                                                                                                                                 | Direction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Vel.                                           | remarks.                              |
| A. M.<br>h. m.<br>5 13.8<br>5 15.0<br>5 18.1<br>5 20.1<br>5 21.3<br>5 23.9<br>5 33.5<br>5 37.8<br>5 38.3             | 1,220<br>1,500<br>1,500<br>1,500<br>1,925<br>2,000<br>2,500<br>2,500<br>3,500<br>3,500<br>4,000<br>4,759<br>4,853<br>5,000<br>5,586<br>6,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 787. 3<br>689. 3<br>677. 4<br>660. 3<br>638. 1<br>607. 5<br>534. 9<br>477. 8<br>429. 8<br>424. 7           | 15.8<br>13.0<br>14.6<br>13.7<br>16.3<br>16.4<br>15.1<br>14.7<br>11.4<br>8.3<br>8.5.2<br>2.4<br>- 1.9<br>- 2.8<br>- 9.3                                                                | 0. 8<br>-1. 1<br>0. 4<br>-0. 9<br>0. 8<br>-0. 6<br>-0. 6     | 69<br>73<br>79<br>71<br>70<br>63<br>555<br>41<br>40<br>38<br>38<br>38<br>34<br>32<br>32<br>31<br>30<br>30 | 8. 887<br>8. 808<br>8. 694<br>7. 398<br>7. 608<br>5. 243<br>4. 993<br>3. 871<br>3. 015<br>2. 379<br>1. 870<br>1. 820<br>1. 441<br>1. 249<br>1. 162 | S. 26° W. N. 83° W. S. 68° W. S. 67° W. S. 76° W. S. 76° W. S. 31° W. S. 30° W. S. 22° W. S. 22° W. S. 22° W. S. 49° W. S. 48° W. S. 41° W. S. 44° W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M.p.s.<br>5.9<br>4.8<br>3.1.2.5<br>2.4<br>1.3<br>6.2<br>6.2<br>6.3<br>10.0<br>11.9<br>12.0<br>13.4<br>13.4<br>14.3<br>14.7<br>21.7<br>21.8<br>9                                                                                                                                                                                                                                                                                                                                                                                                                         | Inversion.                   | P. M. h. m. 6 07.3 6 09.7 6 20.6 6 28.5 6 35.4 6 41.5 6 44.3 6 45.4 6 49.0 6 51.1                                                                   | 15, 000<br>16, 000<br>17, 051<br>18, 000<br>18, 797<br>19, 000<br>20, 000<br>21, 000<br>22, 000<br>23, 000<br>23, 000<br>23, 000<br>23, 23, 179<br>22, 000<br>21, 23, 179<br>22, 179<br>21, 201<br>21, 20 | 33.5<br>23.0<br>29.7<br>31.3<br>40.2                                                   | -62.2<br>-63.0<br>-63.0<br>-60.8<br>-58.7<br>-57.0<br>-57.0<br>-55.6<br>-55.6<br>-55.1<br>-53.5<br>-51.3<br>-51.3<br>-51.3<br>-51.3<br>-51.3<br>-51.3<br>-51.3<br>-51.3<br>-51.3 | 0.5<br>0.1<br>-0.3<br>-0.1<br>1.0<br>-0.4<br>-0.2      | 211<br>211<br>211<br>211<br>211<br>211<br>211<br>211<br>211<br>211                                                            | 0.002<br>0.001<br>0.001<br>0.002<br>0.003<br>0.003<br>0.004<br>0.004<br>0.005<br>0.005<br>0.005<br>0.005                                                                                                             | S. 66° W<br>N.74° W<br>S. 83° W<br>S. 67° W<br>S. 67° W<br>S. 53° E<br>S. 51° E<br>S. 51° E<br>S. 59° E<br>S. 79° E<br>S. 79° E<br>S. 79° E<br>S. 70° E | 6. 1<br>11. 3<br>16. 2<br>12. 4                | Inversion.  Balloon burst. Inversion. |
| 6 21.6<br>6 24.0<br>6 28.7<br>6 32.8                                                                                 | 6,968<br>7,000<br>7,114<br>7,999<br>8,000<br>9,171<br>10,000<br>11,00<br>11,1894<br>12,000<br>13,206<br>13,711<br>14,000<br>15,000<br>15,000<br>15,000<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>16,200<br>1 | 323. 4<br>317. 0<br>281. 8<br>240. 2<br>201. 6<br>185. 3<br>163. 5<br>150. 3<br>140. 7<br>134. 5<br>124. 9 | -16.3 -16.3 -16.3 -20.8 -20.8 -20.8 -27.3 -31.7 -34.0 -38.2 -38.3 -41.8 -45.1 -46.1 -46.0 -47.9 -49.6 -51.3                                                                           | 0. 7<br>0. 6<br>0. 6<br>0. 5<br>0. 7<br>0. 4<br>0. 6<br>0. 0 | 23<br>23<br>23<br>23<br>23<br>23                                                                          | 0.014<br>0.013<br>0.012<br>0.010                                                                                                                   | S. 72° W<br>S. 73° W<br>S. 73° W<br>S. 63° W<br>S. 63° W<br>S. 63° W<br>S. 63° W<br>S. 63° W<br>S. 63° W<br>S. 64° W<br>S. 61° W<br>S. 54° W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18. 2<br>18. 4<br>18. 8<br>15. 7<br>12. 3<br>13. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Few 8. Cu. SW.               | 6 57.9                                                                                                                                              | 19, 000<br>17, 000<br>16, 916<br>16, 928<br>16, 928<br>16, 000<br>15, 228<br>15, 000<br>14, 178<br>14, 000<br>12, 734<br>12, 323<br>12, 000<br>11, 801<br>11, 355<br>11, 000<br>9, 000<br>9, 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67.9<br>75.3<br>89.0<br>105.3<br>117.5<br>132.4<br>141.4<br>153.2<br>164.7             |                                                                                                                                                                                  | 0.1<br>0.2<br>0.2<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0   | 19 19 19 19 19 19 19 19 19 19 19 19 19 1                                                                                      | 0.001<br>0.001<br>0.001<br>0.001<br>0.002<br>0.002<br>0.002<br>0.002<br>0.003<br>0.004<br>0.005<br>0.003                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.4<br>4.5<br>8.6<br>8.6<br>8.3<br>8.2<br>10.0 | Inversion.                            |
| 6 36.6<br>6 38.7<br>6 42.4<br>6 45.2<br>6 48.0<br>6 53.3<br>6 57.0                                                   | 16, 453<br>16, 795<br>17, 000<br>17, 763<br>18, 000<br>18, 207<br>18, 511<br>19, 000<br>19, 619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 82.3<br>78.3<br>67.6<br>63.1<br>60.2                                                                       | -52.8<br>-55.1<br>-55.4<br>-55.8<br>-55.6<br>-55.1<br>-54.8<br>-53.2                                                                                                                  | 0.1<br>0.7<br>0.1<br>-0.1<br>-0.1                            | 22<br>22<br>22<br>22<br>22<br>23<br>23<br>24<br>24<br>24                                                  | 0.005<br>0.004<br>0.005<br>0.005<br>0.005<br>0.006<br>0.009                                                                                        | 8. 39° W.<br>8. 40° W.<br>8. 40° W.<br>8. 22° E.<br>8. 74° E.<br>9. 75° E.<br>9. 63° E. | 13.9<br>1.7<br>3.2<br>9.0<br>6.3<br>4.3<br>13.9<br>10.1<br>5.3<br>4.4<br>3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Inversion.<br>Few S. Cu. SW. | 7 42.5<br>7 45.3<br>7 46.8<br>7 54.7<br>7 57.1<br>7 58.7<br>8 04.3<br>8 06.0                                                                        | 8,000<br>7,034<br>7,000<br>6,443<br>6,184<br>6,000<br>4,615<br>4,500<br>4,000<br>4,000<br>3,733<br>3,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 310.3<br>336.6<br>348.7<br>431.6<br>461.8<br>484.0                                     | -35.6<br>3-29.4<br>-29.4<br>5-28.6<br>-26.6<br>-26.6<br>-20.8<br>-16.6<br>8-8.6<br>-7.8<br>0-5.4                                                                                 | 0. 1<br>0. 7<br>0. 5<br>2. 0<br>0. 9                   | 24<br>25<br>25<br>30<br>31<br>42<br>46<br>45<br>41<br>41<br>41<br>39<br>39<br>38                                              | 0.049<br>0.092<br>0.092<br>0.117<br>0.143<br>0.167<br>0.347<br>0.460<br>0.548<br>0.991<br>1.057<br>1.224<br>1.481<br>2.021                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |                                       |
| P. M.<br>4 57.5<br>5 00.3                                                                                            | 500<br>704<br>1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 701.3                                                                                                      | 13.6<br>10.9                                                                                                                                                                          | 1.4                                                          | 83<br>89<br>76                                                                                            | 9.687<br>8.786<br>8.708                                                                                                                            | S. 86° W<br>S. 80° W<br>S. 77° W<br>S. 47° E<br>S. 83° E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.9<br>2.9<br>2.5<br>1.0<br>0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              | 8 10.3<br>8 11.5                                                                                                                                    | 2,132<br>2,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 590. 7<br>602. 2                                                                       | 4. 1<br>6. 8<br>6. 3<br>6. 2                                                                                                                                                     | 0. 4                                                   | 40<br>41<br>49<br>50                                                                                                          | 2.549<br>3.118<br>3.607                                                                                                                                                                                              | 913.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .                                              |                                       |
| 5 02.3<br>5 04.2<br>5 07.0<br>5 09.0<br>5 13.0<br>5 15.0<br>5 26.1<br>5 30.0<br>5 32.0<br>5 38.9<br>5 46.0<br>5 59.5 | 1,388<br>1,500<br>2,263<br>2,500<br>2,500<br>3,350<br>4,000<br>4,450<br>5,292<br>5,510<br>6,000<br>8,000<br>8,000<br>8,900<br>11,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 646.3<br>607.0<br>581.8<br>532.8<br>505.9<br>442.6<br>396.5<br>385.2<br>340.8<br>321.5                     | 14. 0<br>13. 2<br>10. 0<br>9. 6<br>8. 2<br>6. 2<br>2. 5<br>0. 5<br>-4. 7<br>-8. 4<br>-13. 3<br>-15. 9<br>-20. 5<br>-24. 1<br>-27. 6<br>-29. 0<br>-38. 4<br>-45. 1<br>-49. 9<br>-45. 1 | 0. 1<br>0. 8<br>0. 5<br>0. 8<br>0. 5<br>0. 8<br>0. 9<br>0. 2 | 64<br>59                                                                                                  | 7.288<br>5.504                                                                                                                                     | S. 83° E. N. 41° W. N. 56° W. N. 57° W. S. 1° E. S. 3° W. N. 85° W. N. 85° W. N. 85° W. S. 85° W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.8 0.8 1.1 1.2.2 1.6 1.8 2.3 3.8 2.2.3 3.8 4 4.6 3.5 2.2 3.8 3.5 2.2 3.8 3.5 2.2 3.8 3.5 2.2 3.9 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.9 7.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3 | Inversion.                   | P. M. 0<br>5 06.8<br>5 06.8<br>5 10.0<br>5 10.9<br>5 11.4<br>5 12.3<br>5 13.8<br>5 15.2<br>5 20.3<br>5 22.9<br>5 27.4<br>5 31.6<br>5 37.1<br>5 44.7 | 371<br>500<br>787<br>962<br>1,000<br>1,117<br>1,218<br>1,377<br>1,500<br>1,643<br>2,000<br>3,000<br>3,048<br>3,535<br>4,000<br>4,498<br>5,000<br>6,600<br>6,600<br>7,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 694.9<br>680.5<br>667.8<br>659.9<br>647.4<br>627.1<br>607.1<br>530.1<br>442.6<br>394.3 | 15.8<br>14.5<br>11.7<br>10.4<br>10.1<br>9.7<br>15.0<br>16.2<br>16.2<br>16.4<br>10.0<br>5.4<br>3.0<br>0.0<br>                                                                     | 1.0<br>0.7<br>0.5<br>-5.2<br>-0.8<br>0.0<br>0.3<br>0.9 | 68<br>717<br>717<br>844<br>856<br>566<br>444<br>39<br>322<br>29<br>325<br>245<br>241<br>18<br>166<br>166<br>166<br>166<br>166 | 9. 073<br>8. 755<br>8. 755<br>7. 991<br>8. 036<br>7. 872<br>7. 119<br>6. 013<br>5. 330<br>4. 373<br>3. 642<br>2. 985<br>2. 366<br>1. 420<br>1. 015<br>0. 516<br>0. 516<br>0. 0. 516<br>0. 0. 173<br>0. 078<br>0. 078 | S. 16° W.<br>S. 33° W.<br>S. 68° W.<br>N. 67° W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.7<br>3.0<br>1.5<br>0.6                       | In base of S. Cu. Inversion.          |

Table 4.—Results of sounding balloon ascensions, Avalon, Cal.—Continued.

TABLE 4.—Results of sounding balloon ascensions, Avalon, Cal.—Continued.

JULY 28, 1913—Continued.

JULY 30, 1913.

|                                                     |                                                             |                            |                                                          |                      | 1 20, 1                                      | 1910                                                        | ontinuea.                                    |                      |                                                                                                                           |                                                                |                                                                |                                           |                                                    |                                           | JULY                                         | 30, 11                                                                       | , io.                                                                                                                                        |                                                                    |                                  |
|-----------------------------------------------------|-------------------------------------------------------------|----------------------------|----------------------------------------------------------|----------------------|----------------------------------------------|-------------------------------------------------------------|----------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------|
| . we.                                               | Alti-<br>tude.                                              | Pres-                      | Tem-<br>pera-                                            | <i>∆t</i><br>100 m.  | Humi                                         | idity.                                                      | Wind                                         |                      | Remarks.                                                                                                                  | Time.                                                          | Alti-                                                          | Pres-                                     | Tem-<br>pera-                                      | <u>At</u>                                 | Hum                                          | idity.                                                                       | Wind                                                                                                                                         |                                                                    | Remarks.                         |
|                                                     | tude.                                                       |                            | ture.                                                    |                      | Rel.                                         | Abs.                                                        | Direction.                                   | Vel.                 |                                                                                                                           |                                                                | tude.                                                          | sure.                                     | ture.                                              | 100 m.                                    | Rel.                                         | Abs.                                                                         | Direction.                                                                                                                                   | Vel.                                                               | Tremarks.                        |
| P. M.<br>h. m.<br>5 50.6                            | <b>M</b> .<br>9,000<br>9,533<br>10,000                      | വവാധ                       | ° C.<br>-37.8<br>-41.5<br>-44.7                          |                      | P. ct.<br>15<br>14<br>14                     | g./m <sup>8</sup> .<br>0.023<br>0.014<br>0.010              | 1                                            | М.р.в.               |                                                                                                                           | A. M.<br>h. m.<br>10 54.0<br>10 57.0                           | . MINI                                                         |                                           | 1 1 U U                                            |                                           | 01                                           | 14. 100                                                                      | NE<br>SE.                                                                                                                                    | 1                                                                  | Few Cu.                          |
| 5 55.2<br>6 00.8<br>6 04.9                          | 10,399<br>11,000<br>11,593<br>12,000<br>12,233              | 197. 8<br>165. 2<br>149. 5 | -47. 2<br>-50. 6<br>-53. 6<br>-55. 7<br>-56. 8           | 0. 7<br>0. 5<br>0. 5 | 14<br>14<br>13<br>14<br>14                   | 0.008<br>0.005<br>0.003<br>0.003<br>0.002                   |                                              |                      | Inversion.                                                                                                                | 11 01.0<br>11 03.0<br>11 06.0<br>11 07.3                       | 695<br>884<br>1,000                                            | 703.8<br>688.3<br>664.5                   | 18.3<br>16.9<br>18.2<br>19.9                       | 0.8<br>0.7<br>-1.0                        | 74<br>80<br>69<br>54                         | 11.463<br>11.402<br>10.625<br>9.190                                          | S. 50° W<br>S. 56° W<br>S. 1° W<br>S. 86° W                                                                                                  | 0.6<br>1.8<br>1.9<br>2.1<br>5.1                                    | Inversion.                       |
| 6 09.3<br>6 11.3                                    | 13,096<br>13,293<br>14,000                                  | 131.0<br>127.1             | -55. 7<br>-55. 4<br>-55. 7                               | -0.1<br>-0.2         | 14<br>14<br>13<br>13<br>13<br>13<br>13<br>13 | 0.003<br>0.003<br>0.003<br>0.003<br>0.002<br>0.002<br>0.002 |                                              |                      | Inversion.  Clock stopped at intervals. Time estimated. Clock stopped, but started again at highest altitude.  Inversion. | 11 12.3<br>11 13.9<br>11 15.0<br>11 16.9<br>11 18.9<br>11 20.0 | 1,500<br>1,766<br>1,927<br>2,000<br>2,045<br>2,185<br>2,413    | 621.1<br>609.5<br>601.3<br>591.5<br>576.7 | 20.7<br>21.3<br>20.7<br>20.7                       | -0.2<br>0.4<br>0.4<br>0.4<br>-0.4<br>-0.3 | 36<br>29<br>26<br>34<br>38<br>45<br>30<br>24 | 6. 418<br>5. 353<br>4. 636<br>5. 922<br>6. 581<br>7. 525<br>5. 256<br>4. 132 | 8. 50° W<br>8. 56° W<br>8. 16° W<br>8. 42° E<br>8. 32° E<br>8. 32° E<br>8. 32° E<br>8. 33° E<br>8. 33° E<br>8. 33° E<br>8. 33° E<br>8. 33° E | 6. 4<br>8. 7<br>12. 8<br>12. 4<br>12. 1<br>15. 8<br>15. 2<br>14. 8 | Inversion.                       |
| 6 15.5                                              | 17,000<br>16,489<br>16,063<br>16,000<br>15,000<br>14,253    | 77.1<br>82.4               | -61.4<br>-62.6<br>-62.4<br>-62.2<br>-60.1<br>-58.5       | 0.0<br>0.2           | 12<br>12<br>12<br>12<br>13                   | 0.001<br>0.001<br>0.001<br>0.001<br>0.001                   |                                              |                      | Inversion.                                                                                                                | 11 26.0<br>11 29.0                                             | 3,500                                                          | 532.9<br>516.7                            | 18.5<br>18.3<br>16.1<br>14.8<br>11.0               | 0.3<br>0.8                                | 15<br>14<br>11<br>11<br>10                   | 2.351<br>2.169<br>1.494<br>1.381<br>0.993                                    | S. 33° E.<br>S. 33° E.<br>S. 25° E.<br>S. 24° E.<br>S. 14° E.<br>S. 16° E.<br>S. 16° E.<br>S. 16° E.                                         | 14.8<br>16.0<br>16.2<br>17.8<br>17.2                               |                                  |
|                                                     | ,                                                           |                            |                                                          |                      | JULY                                         |                                                             |                                              |                      | <u> </u>                                                                                                                  | 11 37.0<br>11 39.0                                             | 4,500                                                          |                                           | 10. 2<br>8. 2<br>7. 2<br>3. 8                      | 0.9                                       | 10<br>10<br>10                               | 0.945<br>0.832<br>0.780                                                      | S. 16° E<br>S. 18° E                                                                                                                         | 15.0<br>17.1                                                       | Balloon disapp'd.<br>Few Cu.     |
| A. M.<br>11 10.0<br>11 11.3                         | 34<br>418<br>500                                            | 760. 5<br>726. 8           | 18.6<br>15.2<br>14.5                                     | 0.9                  | 63<br>73<br>76<br>92                         | 9. 933<br>9. 393<br>9. 372                                  | N. 86° W<br>N. 85° W<br>N. 80° W             | 2. 5<br>2. 5<br>2. 3 | ] *                                                                                                                       | 11 45.0<br>11 49.3<br>11 53.0<br>11 55.5                       | 5, 157<br>5, 749<br>6, 000<br>6, 273                           | 414.9<br>385.4<br>360.8                   | - 1.1<br>- 3.5<br>- 6.1<br>- 9.2                   | 0.6<br>1.0<br>0.8                         | 12<br>9<br>9<br>10                           | 0.697<br>0.399<br>0.330<br>0.296<br>0.230                                    |                                                                                                                                              |                                                                    |                                  |
| 11 13.3<br>11 14.8                                  | 1,000<br>1,012<br>1,330                                     | 677. 0                     | 10.6<br>10.4<br>9.4                                      | 0.8                  | 92                                           | 8.802                                                       | N. 85° W<br>N. 80° W<br>N. 48° W<br>N. 47° W |                      | Balloon disap-                                                                                                            | 11 58.5<br>P. M.<br>12 01.0                                    | 7,475<br>8 000                                                 | 324.5<br>309.1                            | - 9.8<br>- 9.9<br>-12.2<br>-15.9                   | 0. 2<br>0. 6                              | ! ا                                          | 0.140                                                                        |                                                                                                                                              |                                                                    |                                  |
| 11 16.5<br>11 18.4<br>11 20.2                       | 1,500<br>1,684<br>2,000<br>2,182<br>2,500<br>2,625<br>3,000 | 588.3<br>557.8             | 12.2<br>11.9<br>11.4                                     | -0.9<br>0.2<br>0.1   | 76<br>55<br>44<br>37<br>30<br>27<br>22<br>18 | 7.645<br>6.073<br>4.711<br>3.888<br>3.056<br>2.733          |                                              |                      |                                                                                                                           | 12 09.0<br>12 16.0<br>12 17.0<br>12 18.8<br>12 22.9            | 8,915                                                          | 255.1                                     | -22.1<br>-22.8<br>-30.2<br>-32.6<br>-32.4<br>-35.6 | 0.7<br>0.7<br>-0.1                        | 7<br>7<br>6<br>6<br>6                        | 0.051<br>0.048<br>0.020<br>0.016<br>0.016<br>0.012                           |                                                                                                                                              |                                                                    | Inversion,                       |
| 11 22.9<br>11 25.7<br>11 28.6                       | 3,344<br>3,500<br>4,000<br>4,041<br>4,500<br>4,832          | 511. 4<br>469. 4           | 7. 4<br>6. 1<br>2. 2<br>1. 8<br>— 2. 9                   | 0.5                  | 18<br>16<br>12<br>11<br>10<br>9              | 1. 423<br>1. 163<br>0. 674<br>0. 601<br>0. 384              | •                                            |                      | Inversion.                                                                                                                | 12 22.9<br>12 25.3<br>12 26.8                                  | 12,391<br>12,653<br>13,000                                     | 156.1<br>150.2                            | -43.6<br>-44.2<br>-44.9<br>-48.4<br>-49.1          | 0.9<br>0.2<br>1.3                         | 6<br>6<br>6                                  | 0.005<br>0.004<br>0.004<br>0.003                                             |                                                                                                                                              |                                                                    |                                  |
| 11 29.9<br>11 33.3<br>11 35.0<br>11 36.1            | 5,000<br>5,120<br>5,953<br>6,000<br>6,272<br>6,629          | 409. 5<br>367. 6           | - 6.2<br>- 6.1<br>-13.4<br>-13.4<br>-14.2                | -0.3<br>0.9          | 9<br>9<br>7<br>7<br>8                        | 0. 265<br>0. 267<br>0. 112<br>0. 112<br>0. 119              |                                              |                      |                                                                                                                           | 12 32.1<br>12 37.0<br>12 37.8                                  | 15,000<br>15,241<br>15,435                                     | 122.5<br>102.1<br>99.3                    | -49.2<br>-48.6<br>-51.4<br>-50.3                   | 0. 2<br>-0. 2<br>1. 4                     | 6<br>6<br>6                                  | 0.002<br>0.003<br>0.003<br>0.003<br>0.002<br>0.002                           |                                                                                                                                              |                                                                    | Inversion. Inversion. Inversion. |
| 11 37.4<br>11 39.2<br>11 41.0                       | 6,908<br>7,000<br>7,437<br>7,882                            | 301. 7<br>283. 7           | -27. 8<br>-28. 6                                         | 0. 8<br>0. 9         | 7<br>7<br>5<br>5<br>5                        | 0.064<br>0.060<br>0.032<br>0.021<br>0.019                   |                                              |                      |                                                                                                                           | 12 42.3<br>12 47.2<br>12 50.1                                  | 17,000<br>18,000<br>18,263<br>18,877                           | 64.7<br>58.9                              | -49.8<br>-53.0<br>-53.9                            | 0.3<br>-0.6                               | 6<br>6<br>6<br>5                             | 0.003<br>0.002<br>0.002<br>0.001<br>0.002                                    |                                                                                                                                              |                                                                    | Inversion.                       |
| 11 43.2<br>11 45.0<br>11 45.7<br>11 46.8<br>11 47.9 | 9,268                                                       | . 233. t                   | -33. 2<br>-36. 4<br>-36. 7<br>-38. 2<br>-39. 1<br>-42. 5 | 0.6                  | 6<br>7<br>7                                  | 0.010                                                       |                                              |                      | 5                                                                                                                         | 12 53.7                                                        | 20,000<br>20,131<br>21,000<br>22,000                           | 48.8                                      | 52.3<br>52.5<br>51.4<br>50.2<br>49.0               | 0.2                                       | 1 5                                          | 0.002<br>0.001<br>0.002<br>0.002<br>0.002                                    |                                                                                                                                              |                                                                    | Inversion.                       |
| 11 48.1<br>11 49.4<br>11 53.0<br>11 53.8<br>11 53.9 | 9,928<br>10,000<br>10,248<br>10,633<br>10,747               | 202. 8<br>191. 3<br>188. 2 | -42.1<br>-43.4<br>-47.2<br>-46.9<br>-47.3<br>-48.3       | 1.6<br>-0.8<br>-0.8  | 7<br>7<br>6                                  | 0.007<br>0.006<br>0.003                                     |                                              |                      | Inversion. One balloon burst and was detached: remaining balloon had sufficient litt-                                     | 1 01.8                                                         | 23, 932<br>24, 900<br>25, 900<br>26, 900<br>27, 900<br>28, 900 | 27.3                                      | 49.5<br>49.4<br>47.7<br>46.2<br>44.5               | 0.1                                       | 5<br>5<br>6<br>6                             | 0.004<br>0.004<br>0.005                                                      |                                                                                                                                              |                                                                    | Inversion.                       |
| 11 55.0                                             | a11,000<br>b <b>23,066</b>                                  | 27.8                       | a-49.3<br>-44.3                                          | -0.4                 | a 5                                          |                                                             | 2                                            |                      | ing force to continue ascent. Clock stopped. Balloon burst.                                                               | i 11.0                                                         | 29,000<br>30,000<br>31,000<br>32,000                           |                                           | _42.5<br>_42.4<br>_42.1<br>_41.9                   |                                           | 6<br>6<br>6                                  | 0.005<br>0.005<br>0.006<br>0.006                                             |                                                                                                                                              |                                                                    |                                  |
|                                                     | 22,000<br>21,305<br>21,000<br>20,000                        | 36.3                       | -49. 5<br>-53. 0<br>-53. 5<br>-55. 2                     | -0.2                 |                                              |                                                             |                                              |                      |                                                                                                                           |                                                                | 32,000<br>31,000<br>30,000<br>29,000<br>28,000                 |                                           | 42.1<br>42.9<br>43.4<br>44.0<br>44.7               |                                           | 6<br>6<br>5<br>5                             | 0.006<br>0.005<br>0.004<br>0.004<br>0.003                                    |                                                                                                                                              |                                                                    |                                  |
|                                                     | 18,111<br>18,000<br>17,145<br>17,000                        | 59. 6                      | -58.4<br>-58.3<br>-58.5<br>-58.7<br>-60.4                | 0.1                  |                                              |                                                             |                                              |                      | Inversion.                                                                                                                | 1 24.9                                                         | 26,000<br>25,118<br>25,000<br>24,000<br>23,000                 | 22.7                                      | _46.6<br>_46.8<br>_49.4<br>_50.8                   | -0.1                                      | 5<br>3<br>5<br>5<br>5                        | 0.003<br>0.003<br>0.003<br>0.002<br>0.002                                    |                                                                                                                                              |                                                                    |                                  |
|                                                     | 15,000<br>14,344<br>14,000<br>13,000<br>12,386<br>12,000    | 107.9<br>146.6             | -59. 2<br>-58. 3<br>-58. 3<br>-57. 6<br>-57. 3<br>-57. 3 | 0.1                  | 3 3                                          | 0.001<br>0.001<br>0.001<br>0.001                            |                                              |                      |                                                                                                                           | (a)                                                            | 22, 249<br>22, 000<br>21, 000<br>20, 000<br>19, 051<br>19, 000 | 35. 1<br>57. 2                            | 52.3<br>52.4<br>52.6<br>53.0<br>53.3<br>53.2       | 0.0                                       | 5<br>5<br>5                                  | 0.001<br>0.001<br>0.001<br>0.001<br>0.001                                    |                                                                                                                                              |                                                                    | Inversion.                       |
| • Estin                                             | 11,368<br>11,000                                            | 170.9                      | -57.3<br>-50.4                                           | ion fro              | m the                                        | 0.002                                                       |                                              | ·····                | succeeding levels                                                                                                         |                                                                | 17,000<br>16,160                                               | 88.6                                      | -51.5<br>-50.8                                     |                                           | 5<br>6<br>6                                  | 0.002                                                                        |                                                                                                                                              |                                                                    |                                  |

Estimated by extrapolation from the ascent.
 Balloou burst; clock started running, but times of this and succeeding levels unknown.

clock stopped at intervals; times of this and subsequent levels unknown.

Table 4.—Results of sounding balloon ascensions, Avalon, Cal.—Continued.

Table 4.—Results of sounding valuon ascensions, Avaion, Cal.—Continued.

JULY 31, 1913.

AUGUST 1, 1913-Continued.

|                                                                |                                                                |                                           |                                                                      |                                     | JULY                                      | 31, 1                                                                         | 913.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                                  |                                                                |                                                          |                                         |                                                                      | LUGU                                       | ST 1, 1                                          | 1913—0                                                 | Continued.                                                                                                                                                                                                         |                                    |                                                  |
|----------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------|-------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|----------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------|
| Time,                                                          | Alti-                                                          | Pres-                                     | Tem-<br>pera-                                                        | _ <i>4t</i><br>100 m.               | Humi                                      | dity.                                                                         | Wind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              | Remarks.                         | Time.                                                          | Alti-<br>tude.                                           | Pres-<br>sure.                          | Tem-<br>pera-                                                        | _ <i>4t</i><br>100 m.                      | Humi                                             | dity.                                                  | Wind.                                                                                                                                                                                                              |                                    | Remarks.                                         |
|                                                                | tude.                                                          | sure.                                     | ture.                                                                | 100111.                             | Rel.                                      | Abs.                                                                          | Direction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Vel.                                         |                                  |                                                                |                                                          |                                         | ture.                                                                |                                            | Rel.                                             | Abs.                                                   | Direction.                                                                                                                                                                                                         | Vel.                               |                                                  |
| A. M.<br>h. m.<br>10 37.5<br>10 39.3<br><br>10 40.2<br>10 41.0 | 388<br>500<br>622                                              | Mm.<br>762.0<br>731.3<br>711.5<br>696.9   | °C.<br>22.9<br>18.0<br>18.0<br>18.1<br>20.5                          | 1.4<br><br>0.0                      | 74<br>74                                  | 11.261                                                                        | S 69° E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              | 5/10 Ci. S.<br>Inversion.        | A. M.<br>h. m.<br>11 34.5<br>11 36.0<br>11 37.2                | 12,000<br>12,366                                         | 161. 7<br>152. 5                        | $-49.4 \\ -49.8$                                                     | 0.6                                        | P.ct.<br>31<br>31<br>31<br>30<br>30              | 0.026                                                  |                                                                                                                                                                                                                    | M.p.s.                             |                                                  |
| 10 41.8<br>10 43.2                                             | 995<br>1,000<br>1,403<br>1,500                                 | 681.2<br>649.7                            | 21.7<br>21.6<br>21.7<br>21.0                                         | -0.6<br>0.0                         | 46<br>46<br>28<br>26                      | 8, 690<br>8, 640<br>5, 289<br>4, 717                                          | S. 57° E<br>S. 57° E<br>S. 58° E<br>S. 52° E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.2                                          |                                  | 11 40.8<br>11 42.7<br>11 45.2                                  | 13,000<br>13,050<br>13,977                               | 125. 4<br>119. 4                        | -52.3 $-52.4$ $-49.8$ $-49.8$                                        | 0.0<br>-0.8                                | 30<br>31<br>31<br>31                             | 0.009<br>0.009<br>0.012<br>0.012                       |                                                                                                                                                                                                                    |                                    | Inversion                                        |
| 10 45.6<br>10 47.3<br>10 48.3<br>10 50.2                       | 2,000<br>2,354<br>2,500<br>2,542<br>3,000<br>3,109             | 581.4<br>568.6<br>531.7                   | 18.7<br>17.0<br>17.0<br>17.0<br>12.8<br>12.8                         | 0.5                                 | 15<br>10<br>10<br>10<br>13<br>13          | 1.434<br>1.444<br>1.375                                                       | S. 24° E<br>S. 8° E<br>S. 20° E<br>S. 23° E<br>S. 25° E<br>S. 25° E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.1<br>5.8<br>8.5<br>10.8<br>11.5<br>9.4     |                                  | 11 53.9<br>11 55.2<br>11 57.0                                  | 15,000<br>16,000<br>16,717<br>16,849<br>17,000           | 78. 7<br>77. 1                          | -49.8<br>-50.5<br>-54.0<br>-56.4<br>-55.5<br>-56.0<br>-57.3<br>-58.0 | 0.3<br>-0.7                                | 30<br>29<br>28<br>28<br>28<br>28                 | 0.012<br>0.007<br>0.005<br>0.005<br>0.005              |                                                                                                                                                                                                                    |                                    | Inversion.                                       |
| 10 52.0<br>10 54.5<br>10 57.3                                  | 4,000<br>4,418<br>4,500<br>5,000<br>5,041                      | 501. 7<br>456. 2<br>419. 5                | 5.8<br>3.7<br>2.7<br>- 1.8                                           | 0.8                                 | 14                                        | 1. 210<br>1. 158<br>0. 855<br>0. 620<br>0. 580<br>0. 344<br>0. 336            | S. 21° E.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.0<br>7.7<br>11.2<br>15.0<br>14.6<br>12.8   |                                  | P. M.<br>12 03.3                                               | 18,395<br>19,000<br>19,993<br>20,000                     | 60.6<br>47.3                            | -58.6<br>-57.6                                                       | -0.2                                       | 30<br>30                                         | 0.000                                                  |                                                                                                                                                                                                                    |                                    |                                                  |
| 11 00.2<br>11 03.0<br>11 06.0<br>11 09.0                       | 6,000<br>6,557<br>7,000<br>7,430<br>8,000                      | 345.2<br>307.0                            | - 9.8<br>-11.3<br>-16.3<br>-20.6<br>-24.4<br>-28.6                   | 1.0                                 | 10<br>12<br>14<br>16<br>16<br>16          | 0. 203<br>0. 193<br>0. 143<br>0. 118<br>0. 094<br>0. 063<br>0. 043            | S. 35° E<br>S. 32° E<br>S. 26° E<br>S. 20° E<br>S. 10° E<br>S. 4° E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.7<br>14.6<br>16.9<br>16.2<br>15.7<br>14.4 | Balloons disap-                  | 12 06.7<br>12 07.2                                             | 20, 45<br>20, 67<br>21, 00<br>22, 00<br>23, 00<br>23, 46 | 44.1<br>5 42.6<br>0                     | -54.2<br>-55.4<br>-55.0<br>-54.3<br>-53.5                            | 0.5                                        | 30<br>30<br>30<br>30<br>30<br>30<br>29           | 0.000<br>0.000<br>0.000<br>0.000                       | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                        |                                    |                                                  |
| 11 10.0<br>11 13.8                                             | 9,000<br>10,000<br>10,188<br>11,000                            | 208.4                                     | -34.6<br>-42.5<br>-43.6<br>-47.4                                     | 0.8                                 | 16<br>15<br>15<br>14                      | 0.03<br>0.01<br>0.01<br>0.00                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | peared in Cirrus<br>clouds.      | 12 12.6<br>12 15.6                                             | 21,00                                                    | Ŋ                                       | —52. 6<br>—52. 5<br>—55. 6<br>—55. 7                                 | -0.1<br>-0.2                               | 28<br>29<br>28<br>28<br>28<br>28<br>1 28<br>1 28 | 0.000<br>0.000<br>0.000<br>0.000                       | 3                                                                                                                                                                                                                  |                                    | Inversion.                                       |
| 11 18.2<br>11 21.2<br>11 22.6                                  | 12,000<br>13,000<br>13,165<br>13,533                           | 132.9<br>126.0                            | -51.<br>-52.<br>-56.<br>-57.<br>-56.<br>-56.<br>-56.<br>-56.<br>-56. | 8<br>6<br>6 0.5<br>5 0.2            | 14<br>14<br>13<br>13<br>13                | 0.000<br>0.000<br>0.000<br>0.000                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                            | Inversion.                       | 12 17.7<br>12 18.7<br>12 19.3<br>12 21.2<br>12 23.0<br>12 25.3 | 19,00<br>18,59                                           | 2 58.8<br>0 69.8<br>4 74.6              | -54. (<br>-55. 4<br>-55. 4<br>-57. 3<br>-54. (<br>3 -54. (           | 0.4<br>0.4<br>0.4                          | 28<br>28<br>28<br>4 28<br>29<br>3 29             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                   | 6<br>6<br>                                                                                                                                                                                                         |                                    | Inversion.                                       |
| 11 23 9<br>11 25 6<br>11 29 6<br>11 30 1<br>11 31 3            | 15,000<br>16,000<br>16,166<br>16,600                           | 83.<br>78.                                | 0 -54.<br>-55.<br>-57.<br>7 -58.<br>1 -58.<br>4 -58.                 | 7<br>1 0.2<br>8 0.2<br>4 -0.1       | 12                                        | 0.00                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              | Inversion.                       | 12 25. 12 26. 5                                                | 7 16,77<br>5 16,41<br>16,00<br>15,00                     | 77. 1<br>4 82. 0<br>0<br>7 114.         | —51. 4<br>3 —49. 5                                                   | 0.2<br>3<br>4<br>0.2                       | 22 22 29 29 29 29 29 29 29 29 29 29 29 2         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.01           | 6<br>7<br>8<br>7<br>7                                                                                                                                                                                              |                                    | Inversion.                                       |
| 11 31.8<br>11 34.8<br>11 36.6                                  | 17, 134<br>18, 000<br>18, 607<br>19, 000<br>19, 580<br>20, 000 | 72. (<br>)<br>                            | 0 - <b>58.</b><br>-58.<br>1 -57.<br>-56.<br>1 -54.<br>-53.           | 9 0.2<br>6 -0.1<br>6 -0.3<br>7 -0.3 | 12<br>12<br>13<br>14<br>13<br>14<br>15    | 0.00                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                            | . Inversion.                     | 12 34.8<br>12 37.0                                             | 13, 25<br>13, 00<br>12, 44<br>12, 00<br>11, 00<br>10, 85 | 4 132.1<br>0<br>1 150.0<br>0<br>7 190.0 | -51.3<br>-51.3<br>-50.3<br>-48.9<br>-44.9                            | 0. 1<br>7 0. 4<br>9                        | 22<br>4<br>. 30<br>1 33<br>8 33                  | 0.00<br>0.00<br>0.01<br>0.02<br>0.02                   | 9                                                                                                                                                                                                                  |                                    | Inversion.                                       |
| 11 40.3<br>11 41.3<br>11 43.6                                  | 21,55°<br>22,000                                               | 2 37.4<br>7 36.5                          | -51.<br>-51.<br>2 -51.<br>-49.<br>5 -48.                             | 2 -0.5                              | 2 13<br>1 13                              | , 0.00                                                                        | 4<br>4<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              | •1                               | 12 47.4<br>12 51.1<br>12 55.1                                  | 9,00<br>7 8,18<br>8,00                                   | 3 237.<br>0<br>8 276.<br>0              | 2 —32.<br>—30.<br>8 —24.<br>—23.                                     | 5<br>5                                     | 8 3<br>8 3<br>5 3<br>9 3                         |                                                        | 2<br>6<br>8<br><br>6<br><br>2<br>2                                                                                                                                                                                 |                                    |                                                  |
|                                                                |                                                                |                                           |                                                                      |                                     | AUGU                                      | <b>ST 1</b>                                                                   | , 1913.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ·i ···                                       |                                  | 1 00.<br>1 02.                                                 | 7,00<br>6.00<br>4 5,71<br>8 5,11                         | 0<br>9 384.<br>5 414.                   | -18.<br>-10.<br>0 - 7.<br>9 - 3.                                     | 7<br>2<br>7 0.<br>6                        | 7 30                                             | 6 0.76<br>6 0.93                                       | 3                                                                                                                                                                                                                  |                                    | · <del>l</del>                                   |
| A. M.<br>10 36.<br>10 36.<br>10 38.                            | S 179                                                          | 761.0<br>748.0<br>732.                    | 4 20.<br>4 22.                                                       | 4 -1.3                              | 7                                         | 12.66                                                                         | 0<br><br>0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              | . Inversion.                     |                                                                | - 5,00                                                   |                                         | - - 3.                                                               | <u>'</u>                                   | AUGU                                             | <u> </u>                                               | , 1913.                                                                                                                                                                                                            | 1                                  |                                                  |
| 10 40.<br>10 40.<br>10 41.<br>10 44.                           | 9 856<br>1,000<br>9 1,01<br>1,500<br>9 1,53                    | 7 704<br>9 691<br>0<br>5 679<br>4 640     | 8 24.<br>24.<br>6 24.<br>22.<br>0 21.                                | 4 -0.0<br>7 -0.0<br>2 0.0<br>8 0.0  | 5 4                                       | 7.98                                                                          | 7<br>77<br>8. 8°W<br>12 8. 44°E<br>19 8. 39°E<br>11 8. 38°E<br>12 8. 42°E<br>10 8. 42°E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 8.                                         | 6<br>6<br>1<br>1<br>2            | A. M.<br>10 59.<br>11 00.<br>11 01.                            | 3 25<br>5 43                                             | 7 726.                                  | 5 22.<br>5 26.                                                       | 8<br>7<br>-2.<br>9<br>1.                   | 2 5<br>5<br>6 4                                  | 9 14. 78<br>2 13. 92<br>5 12. 80                       | 17 E                                                                                                                                                                                                               |                                    | -                                                |
| 10 51.<br>10 58.<br>10 58.<br>11 00.                           | 2,50<br>1 2,55<br>3,00<br>. 3,50                               | 0<br>5 567.<br>0<br>0<br>8 468.<br>2 451. | 8 14.<br>10.<br>7.                                                   | 0<br>0<br>9                         | 8 44<br>5 5<br>7 6 4                      | 5. 46<br>5. 46<br>5. 26<br>4. 73<br>4. 26<br>9. 3. 36<br>1. 3. 41<br>1. 2. 41 | 11 S. 43° E. 193 S. 44° E. 193 S. 44° E. 193 S. 44° E. 198 S. 36° E. 197 S. 16° E. 197 S. 18° S. 16° E. 197 S. 16° | 7.<br>5.<br>6.<br>6.<br>7.<br>7.             | 7<br>5<br>1<br>1<br>7<br>4       | 11 04.<br>11 05.<br>11 06.<br>11 07.                           | 0 1.00<br>0 1,19<br>0 1,50<br>0 1,60                     | 8 635.                                  | 1 28.<br>6 27.<br>25.                                                | 0 —0.<br>0 0.<br>5<br>1 0.<br>4 0.<br>4 0. | 6 3<br>6 2<br>6 2                                | 9 8.25<br>8 7.75<br>7 7.31                             | 12 S. 83° W.<br>10 S. 64° W.<br>10 S. 13° E.<br>12 S. 62° E.<br>13 S. 47° W.<br>18 S. 21° E.<br>18 S. 48° E.                                                                                                       | 3.3<br>2.3                         | 3<br>3<br>5<br>7<br>3<br>1                       |
| 11 05.<br>11 05.<br>11 09.<br>11 10.                           |                                                                | 0                                         |                                                                      | 5                                   | 6 3 3 3 3                                 | 2.30<br>9 1.60<br>6 1.20<br>7 0.80<br>7 0.60                                  | 12 S. 3° E.<br>132 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.<br>10.<br>11.<br>10.<br>9.                | 5<br>3<br>6<br>1<br>5 Inversion. | 11 14.<br>11 14.<br>11 19.                                     | 9 2,3                                                    | 00                                      | 7 19.                                                                | 3<br>3<br>2 1.                             | 9 3<br>8 3<br>. 3<br>0 3                         | 5 5.46<br>5 5.66<br>6 5.26<br>7 3.96                   | 5. 63 E<br>54 S. 21° E<br>53 S. 12° E<br>55 S. 9° E<br>56 S. 1° E<br>51 S. 1° E                                                                                                                                    | 4.<br>4.<br>5.<br>7.               | 9 Inversion.<br>6<br>2<br>2<br>2<br>3 Inversion. |
| 11 10.<br>11 11.<br>11 12.<br>11 14.<br>11 19.                 | 0,00                                                           | U 33U.                                    | 7-10                                                                 | . <u> </u>                          | 2<br>7<br>3<br>3<br>3<br>3<br>3<br>7<br>3 | 7 0.5<br>7 0.4<br>8 0.4<br>5 0.3<br>1 0.1<br>0 0.1                            | 76 S. 12° W. 13 S. 6° W. 16 S. 1° E. 71 S. 13° E. 19 S. 6° E. 78 S. 5° E. 13 S. 2° F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.<br>16.<br>12.<br>6.<br>8.<br>8.          | 8<br>0<br>5<br>6<br>3<br>6       | 11 20.<br>11 22.<br>11 24.<br>11 29.                           | 0 3,60<br>4,0<br>0 4,4                                   | 31 498.<br>30<br>37 453.                | 3 9.<br>6.<br>2 2.                                                   | 6 -1.<br>6 0.<br>9<br>2 0.<br>3<br>9 0.    | 1 3<br>8 3<br>4 2<br>8 2                         | 4.00<br>3 3.19<br>0 2.79<br>8 2.49<br>5 1.8<br>12 1.20 | 33 S. 47° W. 38 S. 21° E. 38 S. 21° E. 38 S. 21° E. 39 S. 21° E. 30 S. 12° E. 30 S. 12° E. 30 S. 1° E. 30 S. 6° E. 30 S. 6° E. | 18.<br>7.<br>7.<br>7.<br>9.<br>11. | 2<br>4<br>5<br>4<br>4<br>2                       |
| 11 29.                                                         | 10,00<br>3 10,70                                               | 0<br>3<br>194.                            | 6 -36                                                                | 6<br>4 0.                           | 7 3                                       | 1 0.0                                                                         | S. 1° W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.                                          |                                  | 11 36.                                                         | 3 5,7<br>6,0                                             | 00<br>17 386.<br>00                     | 1 - 0.<br>1 - 4.<br>- 6.                                             | 6 0.<br>8                                  | 6 1<br>1                                         | 0.95<br>8 0.66<br>7 0.4                                | 22 S. S° E<br>03 S. 2° E<br>76 S                                                                                                                                                                                   | 10.<br>9.<br>9.                    | 0                                                |

Remarks.

Vel.

M.p.s.
18.4
20.3
18.2
21.2 Inversion.
9.4
9.4
9.2 Inversion.
9.6
11.4
17.9
25.8
12.5
7.8
20.3 Inversion.
19.6
16.5
13.7

Table 4.—Results of sounding balloon ascensions, Avalon, Cal.—Continued.

AUGUST 2, 1913—Continued.

Table 4.—Results of sounding balloon ascensions, Avalon, Cal.—Continued.

AUGUST 3, 1913—Continued.

| A. M.   Mr.   Mr.   Mr.   Mr.   C.   P.   G.   Mrs.   S.   T.   W.   Mr.   S.   P.   M.   Mr.   Mr. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Alti-                                                                                                                                                                  | Pres-                                                                                  | Tem-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ₫ŧ                                                                           |                                                                                | idity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Wind.                                                                                                                                                                                                                                                                                                                                        |                                                                                                | Remarks.                                                                                                                                                            | Time.                                                                                            | Alti-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                      | Tem-                                                                                                                                                                                                  |                                                                                                      | Hum    | idity. | Wind                                                                                                                                                                                                         | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A. T. M. Mark         A. T. M. Mark         C. J. O. B.         16 0. 227 8.8.         8. 7° W. S.         16 0. 227 8.8.         8. 7° W. S.         9. 6         1 4.00 054.0         1. 4.00 054.0         9. 6.1 16.0.228 8.5° W. S.         9. 6         1 4.00 054.0         1. 4.00 056.8         0. 4         8. 22° W. S.         1. 4.00 056.8         0. 4         8. 22° W. S.         1. 5         1. 5         1. 5         1. 5         1. 5         1. 5         1. 5         1. 5         1. 5         1. 5         1. 5         1. 5         1. 5         1. 5         1. 5         1. 5         1. 5         1. 5         1. 5         1. 5         1. 5         1. 5         1. 5         1. 5         1. 5         1. 5         6. 32.0         1. 5         1. 5         8. 2° W. S.         3. 2° W. S.         8. 2° W. S.         3. 2° W. S.         1. 1. 0         6. 32.0         1. 5         6. 30.1         1. 5         9. 6         9. 6         3. 1         9. 6         3. 1         9. 6         3. 1         9. 6         3. 1         9. 6         3. 1         9. 6         3. 1         9. 6         3. 1         9. 6         3. 1         9. 6         3. 1         9. 6         3. 1         9. 6         3. 1         9. 6         3. 1         9. 6         3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                        |                                                                                        | ture.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100 m.                                                                       | Rel.                                                                           | Abs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Direction.                                                                                                                                                                                                                                                                                                                                   | Vel.                                                                                           | Itelia ka                                                                                                                                                           |                                                                                                  | tude.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sure.                                                                                | ture.                                                                                                                                                                                                 | 100 m.                                                                                               | Rel.   | Abs.   | Direction.                                                                                                                                                                                                   | · \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 15,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A. M. | 14. 6,789 7,902 7,912 8,000 9,086 10,000 10,591 11,000 12,000 13,168 13,449 14,284 14,541 14,000 15,437 16,000 21,302 21,000 21,302 21,000 21,000 18,990 18,990 16,000 | Mm. 336. 8 289. 8 247. 1 199. 3 161. 1 135. 4 130. 0 122. 7 114. 4 110. 1 106. 7 96. 0 | • C12. 7 -14. 4 -21. 7 -21. 7 -22. 5 -28. 5 -54. 0 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. 2 -55. | 0.8<br>0.8<br>0.9<br>0.8<br>0.8<br>0.3<br>-0.5<br>0.3<br>-0.5<br>0.3<br>-0.5 | P. ct. 166 155 154 133 133 133 133 134 120 121 121 121 121 121 121 121 121 121 | 9./m². 0.272 0.235 0.114 0.105 0.053 0.021 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.000 | S. 7° W. S. 5° W. S. 5° W. S. 4° E. S. 21° W. S. 28° W. S. 28° W. S. 28° W. S. 30° W. S. 40° W. S. 8° W. S. 8° W. S. 8° W. S. 50° W. S. 50° W. S. 40° W. S. 50° W. | M.p.s. 9.2 9.6 9.2 9.6 11. 5 11.0 10.9 10.8 10.7 11.0 11.8 11.8 22.3 23.0 8 20.8 18.3 14.7 7.4 | Inversion.  Inversion.  One balloon burst and became detached: the remaining balloon had sufficient lifting force to continue ascent.  Balloon disappeared. Few Cu. | h. m. 6 24.0 6 39.0 6 30.1 6 33.0 6 34.0 6 35.7 6 38.4 6 40.0 6 44.1 6 50.0 7 04.2 7 10.0 7 17.7 | M. 14, 729 15, 000 14, 729 15, 000 15, 794 11, 16, 714 16, 936 17, 000 16, 492 16, 000 14, 000 15, 238 15, 208 15, 100 11, 782 11, 000 11, 782 11, 000 12, 000 8, 539 8, 000 7, 000 6, 275 5, 000 4, 000 4, 000 4, 000 3, 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3, 000 3 | Mm. 107.0 90.8 88.2 79.4 78.1 76.0 69.4 79.9 88.6 97.8 135.3 136.0 213.6 321.0 405.3 | • C54.0 -59.2 -5.6 .8 -59.2 -6.5 .3 -6.5 .3 -6.5 .3 -6.5 .3 -6.5 .3 -6.5 .4 -6.5 .3 -6.5 .4 -6.5 .4 -6.5 .4 -6.5 .4 -6.5 .4 -6.5 .5 .2 -5.0 .2 -5.0 .2 -5.0 .2 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 | 0.44<br>0.88<br>-0.2<br>0.3<br>-0.6<br>-2.5<br>0.0<br>-0.6<br>0.0<br>0.6<br>0.7<br>0.7<br>0.0<br>0.6 | P. ct. | g. m². | S. 22° W.<br>S. 29° W.<br>S. 23° W.<br>S. 27° E.<br>S. 26° E.<br>S. 26° E.<br>S. 48° E.<br>S. 48° E.<br>S. 48° E.<br>S. 48° E.<br>S. 45° E.<br>S. 71° E.<br>S. 71° E.<br>S. 11° W.<br>S. 11° W.<br>S. 15° W. | Add to the state of the state o |
| 12,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 01.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15,000<br>14,000<br>13,908<br>13,000                                                                                                                                   | 120.8                                                                                  | -63.2<br>-58.6<br>-58.6<br>-57.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                          | 11<br>12<br>13<br>14<br>15                                                     | 0.001<br>0.002<br>0.002<br>0.002<br>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                              |                                                                                                | THY OLD UM.                                                                                                                                                         | 7 30.4                                                                                           | 2,500<br>2,187<br>2,000<br>1,500<br>1,208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 591.5<br>662.5                                                                       | 14.5<br>17.0<br>18.9<br>23.9<br>26.7                                                                                                                                                                  | 1.0                                                                                                  |        |        |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

AUGUST 3, 1913.

|              | м.<br>07.0 | 84                                                                                                                                        | 756.9          | 26.3           |       | 62       | 15. 199 |                                                                       |            |              | Few<br>mou<br>mair<br>versi | ıntai<br>dand. | over<br>ns or<br>In- |
|--------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|-------|----------|---------|-----------------------------------------------------------------------|------------|--------------|-----------------------------|----------------|----------------------|
| 5            | 07.7       | 233                                                                                                                                       | 739.8          | 24.1           | 1.1   | 62       | 13. 433 |                                                                       |            |              | Vers                        | оц.            |                      |
|              |            | 500                                                                                                                                       |                | 30.0           |       | 40       | 12.014  |                                                                       |            |              |                             |                |                      |
| 5            | 09.4       |                                                                                                                                           | 714.4          | 30.8           | -2.2  | 37       | 11.604  |                                                                       |            |              |                             |                |                      |
| 5            | 10.3       | 754                                                                                                                                       | 697. 5         |                |       |          | 7.632   | N. 65                                                                 | W          | 2.7          |                             |                |                      |
|              | 11.3       |                                                                                                                                           | 687.7          |                |       | 18       | 5.585   | N. 65                                                                 | W          | 6. 4<br>5. 8 |                             |                |                      |
|              | -::-:      |                                                                                                                                           |                | 30.0           |       | 11       | 3.216   | N. 62°<br>N. 60°                                                      | 747        | 5. 4         |                             |                |                      |
|              | 13.0       |                                                                                                                                           | 672.3<br>656.9 | 29.0           | 0.5   | 111      | 9 070   | 2 81                                                                  | w          | 5.3          |                             |                |                      |
| ð            | 14.0       | 1,202                                                                                                                                     |                | 28.2           | 0.7   | 1 12     | 2,925   | S. 81°<br>S. 75°                                                      | w          |              |                             |                |                      |
|              |            | 0.000                                                                                                                                     |                | 21.8           |       | 15       | 2.850   | 8. 60                                                                 | w          | 4.5          |                             |                |                      |
| 5            | 19.9       | 2,398                                                                                                                                     | 577.7          | 18.4           | 0.9   | 17       | 2.649   | 8. 49°                                                                | w          | 4.0          |                             |                |                      |
|              |            | 2,500                                                                                                                                     |                | 17.7           |       | 17       | 2.541   | S. 46°                                                                | <u>w</u>   | 4.2          |                             |                |                      |
|              | 22.8       |                                                                                                                                           | 548.7          | 15.8           | 0.6   | 17       | 2.268   | 8. 36                                                                 | <u>w</u>   | 4.9          |                             |                |                      |
|              |            | 3,000                                                                                                                                     |                | 14.6           |       | 17       | 2.109   | 8. 25                                                                 | W          | 5.2          |                             |                |                      |
| .:-          |            | 3,500                                                                                                                                     |                | 10.7           | :     | 15       | 1.000   | B. 9                                                                  | 늗.         | 6. 1<br>6. 6 |                             |                |                      |
| Ð            | 28.0       | 3,804                                                                                                                                     | 488.8          | 7.4            | 0.8   | 110      | 1.204   | D. 30                                                                 | , 뜌''      | 5. 2         |                             |                |                      |
| ٠            | 31.0       | 4,000                                                                                                                                     | 451.3          | 4.5            | 0.6   | 12       | 0.018   | S. 75° S. 60° S. 46° S. 36° S. 25° S. 30° S. 30° S. 39° S. 73° S. 73° | w.         | 1.8          |                             |                |                      |
| 0            | 31.0       | 4 500                                                                                                                                     | 451.0          | 4.0            | 0.0   | 1 12     | 0.898   | 8 42                                                                  | · w        | 1.8          |                             |                |                      |
| 5            | 34. ñ      | 4,996                                                                                                                                     | 422.0          | - 0.2          | 0.9   | l        | 1       | 8. 73                                                                 | w.i        | 2. 2         |                             |                |                      |
|              |            | 5,000                                                                                                                                     |                | - 0.5          |       |          |         | 8. 73                                                                 | w          | 2.3          |                             |                |                      |
| 5            | 37.0       | 5,533                                                                                                                                     | 394.7          | - 3.8          | 0.7   | 1        |         | 8. 79                                                                 | w          | 4.8          |                             |                |                      |
| 5            | 39.0       | 5,792                                                                                                                                     | 381.8          | — 6.6          | 1.1   |          |         | S. 48                                                                 | <u>`</u> ₩ | 4.6          |                             |                |                      |
|              | '          | 6,000                                                                                                                                     | ļ              | <b> </b> −_8.2 |       |          |         | B. 44                                                                 | . w        | 4.2          |                             |                |                      |
|              | - ::- :    | 7,000                                                                                                                                     | - 414-4        | 17.0           |       |          |         | 3. ZZ                                                                 | 707        | 2.5<br>2.2   |                             |                |                      |
| 5            | 45.8       | 7,183                                                                                                                                     | 318.8          | 17.4           | 0.8   |          |         | D. 19                                                                 | W          | 3.5          |                             |                |                      |
| .ř.          | E2 0       | 8 200                                                                                                                                     | 272 7          | 27.0           | a     |          |         | 8 7                                                                   | E.         | 4.0          |                             |                |                      |
| u            | U2. V      | 9,000                                                                                                                                     | 2.0            | -31.1          |       |          |         | š                                                                     |            | 5.9          |                             |                |                      |
| · k          | 58.0       | 9,573                                                                                                                                     | 229.7          | -34.4          | 0.6   |          |         | S. 6                                                                  | w          | 7.6          |                             |                |                      |
|              |            | 10,000                                                                                                                                    |                | -36.8          |       |          |         | 8. 7                                                                  | w          | 7.7          |                             |                |                      |
| 6            | 04.8       | 10,790                                                                                                                                    | 193.0          | -41.5          | 0.6   | <b>i</b> | .       | 8. 8                                                                  | 8          | 7.9          |                             |                |                      |
|              |            | 11,000                                                                                                                                    | <b> </b>       | -42.7          |       |          | .       | 8. 9                                                                  | <u>w</u>   | 9.4          |                             |                |                      |
| ٠ <u>.</u> . | •::•:      | 12,000                                                                                                                                    | 1-:::-:        | j-49. 2        |       | .j       | . ]     | 8. 14                                                                 | - W        | 16.4<br>16.8 |                             |                |                      |
| 6            | 10.0       | 12,050                                                                                                                                    | 160.6          | 49.7           | 0.7   | ]        | .       | D. 14                                                                 | - w        | 22.3         |                             |                |                      |
| 6            | 10. 1      | 12,830                                                                                                                                    | 140.8          | - ED 1         | 0.0   | '        | ·   •   | g. 7                                                                  | • ₩¨       | 21.3         |                             |                |                      |
|              | 10 1       | 4,500<br>4,996<br>5,000<br>5,533<br>8,792<br>6,000<br>7,183<br>8,000<br>9,573<br>10,000<br>11,000<br>12,000<br>12,000<br>12,930<br>13,310 | 132 9          | -50.1          | 0.4   | 1        |         | 8. 16                                                                 | w          | 16. 7        |                             |                |                      |
| U            | 10. 1      | . 40,010                                                                                                                                  | . TOD!         | OT. 0          | . 0.1 |          |         |                                                                       |            |              |                             |                |                      |

AUGUST 7, 1913.

|                                                |                                                                                                                         | AUGUS1 7, 1915.                                                                     |                                                                     |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| P. M.<br>4 52.0<br>4 55.7<br>4 57.2            | 34 756. 4 21. 4                                                                                                         | 2. 2 83 11. 972 N. 51° W<br>-2. 7 70 14. 411 S. 37° W<br>66 13. 979 S. 53° W        | 1.9 Few A. Cu., few 8<br>1.5 Inversion.<br>2.0<br>2.2<br>3.5<br>6.8 |
| 4 58.9<br>5 00.7<br>5 03.0<br>5 06.4<br>5 07.8 | 772 694.5 28.8 - 1,000 29.9                                                                                             | -2.6 30 8.441 N.80° W<br>21 6.274 N.87° W<br>-0.5 20 6.007 N.88° W                  | 6.8<br>7.1<br>7.2<br>7.7<br>4.5<br>6.4 Inversion.                   |
| 5 09.4<br>5 12.7<br>5 17.0                     | 1,741 622.6 27.0<br>2,000 26.9<br>2,116 596.5 26.8<br>2,500 23.5                                                        | -1.1 9 2.674 N.72° W<br>1.4 6 1.529 N.43° W<br>6 1.521 N.46° W                      | 7.3<br>5.1<br>6.5<br>7.1<br>4.7                                     |
| 5 23.0<br>5 26.0<br>5 35.6                     | 2, 551 567. 5<br>2,796 551. 5<br>3,000 17. 8<br>3, 459 510. 1<br>11. 8<br>3, 500 11. 1<br>4,000 0. 7                    | 1. 3 12 1. 253 N. 40° E                                                             | 4. 2<br>3. 1<br>3. 5<br>4. 5<br>4. 6<br>5. 4<br>6. 4                |
| 5 46.0                                         | 4,087 472.3 - 0.7<br>4,500 - 7.2                                                                                        | 2.0 22 1.007 N.33° E                                                                | 6.7 At the base of Cu. 5:57 p. t<br>Balloons disa                   |
| 5 58.0<br>6 02.0<br>6 04.3                     | 4,708 436.5 —10.2<br>4,851 428.8 —12.7<br>4,987 421.0 —12.9<br>5,000 —12.7                                              | 1. 6 61 1.292 N.32° E<br>1. 7 62 1.056<br>0.1 80 1.338<br>80 1.362<br>-0.7 77 1.432 | 8.4 Inversion.                                                      |
| 6 05.7<br>6 14.0<br>6 20.0<br>6 24.0           | 5, 167 411. 7 -11. 7 -5, 575 390. 3 -14. 8 5, 881 374. 8 -19. 1 5, 967 370. 4 -19. 7 6, 000 -19. 9 6, 405 349. 1 -24. 4 | 0.8 69 0.979<br>1.4 61 0.594<br>0.7 49 0.450<br>48 0.432                            |                                                                     |
| 6 36.1<br>6 41.0                               | 6,405 349.1 —24.4<br>6,442 347.5 —25.2                                                                                  | 0. 8 34 0. 221                                                                      |                                                                     |

Table 4.—Results of sounding balloon ascensions, Avalon, Cal.—Concluded.

#### AUGUST 8, 1913.

| Missa                      | Alti-                                                                                                                                                                  | Pres-            | Tem-                    | Δt                         | Hum            | idity.                        | Wind.                            |                | Remarks.                                         |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------|----------------------------|----------------|-------------------------------|----------------------------------|----------------|--------------------------------------------------|
| Time.                      | tude.                                                                                                                                                                  | sure.            | pera-<br>ture.          | 100 m.                     | Rel.           | Abs.                          | Direction.                       | Vel.           | Itomarks.                                        |
| P. M.<br>h. m.<br>5 23.5   | М.<br>34<br>367                                                                                                                                                        | Mm.<br>755.6     | °C.                     |                            | P. ct.         | g. m³.<br>12.838              | S. 32° W                         | М.р.а.<br>4. 3 | 4/10 S. Cu. SSE.                                 |
| 5 25.1                     |                                                                                                                                                                        | 726.6            | 17.2<br>16.4            | 0.8                        | 80             | 11.608<br>11.342              | 8. 32° W                         | 4.3            | _                                                |
| 5 26.7                     | 786                                                                                                                                                                    | 691.5            | 14.4                    | 0.7                        | 88             | 10.785                        | N. 55° W                         | 0.9            | Balloon in S. Cu.<br>N.W. Inversion.             |
| 5 27.4                     | 1,000<br>1,021<br>1,122                                                                                                                                                | 672.6            | 20.4                    | -2.6<br>-1.4               | 64             | 11. 336<br>11. 213<br>10. 640 | N. 12° E                         | 2.0            |                                                  |
| 5 28.4<br>5 29.1<br>5 29.5 | ] 1,2 <del>1</del> 4                                                                                                                                                   | 655.4            | 24. 5                   | -2.2                       | 49             | 10. 859<br>10. 200            | 8. 69° E<br>8. 77° W             | 0, 2<br>1, 0   |                                                  |
| 5 30.2                     | 1,500<br>1,539                                                                                                                                                         | 633.6            | 24. 4<br>24. 2          | 0.6                        | 43<br>42       | 9.476<br>9.151                | N.82° W<br>N.73° W<br>N.45° W    | 1.8            | Inversion.                                       |
| 5 30.7                     | 2,000                                                                                                                                                                  | 621.3            | 23.1                    |                            | 39             | 7.983                         | N. 21° W                         | 6.0            |                                                  |
| 5 32.3                     | 2,500                                                                                                                                                                  | 595. 4<br>559. 2 | 19.3                    |                            | 40             | 6.572                         | N. 15° W<br>N. 25° W<br>N. 28° W | 3. 6<br>2. 8   |                                                  |
| 5 39.0                     | 3,000<br>3,316                                                                                                                                                         | 514.7            | 14.5<br>11.4            | 1,0                        | 41<br>41       | 5.055<br>4.176                | N. 20° W<br>N. 13° W             | 4.1<br>5.2     |                                                  |
|                            | 3,500                                                                                                                                                                  |                  | 9.8<br>5.8              |                            | 43<br>46       | 3.961<br>3.278<br>3.079       | N. 10° W<br>N. 2° W<br>N. 1° E   | 3.2            |                                                  |
| 5 40. 5<br>43. 4           | 4,500                                                                                                                                                                  | 462.6            | 1 2.2                   | [ [                        | 50             | 2.806<br>2.387                | N. 17° W                         | 3.0<br>3.4     |                                                  |
| 5 46.8                     | 5,000<br>5,982                                                                                                                                                         | 369.6            | - 0.9<br>- 1.0<br>- 6.5 | 1 0.6                      | 53<br>57       | 2.368<br>1.634                |                                  | 3. 4<br>3. 0   |                                                  |
| 5 47.1                     | 1 6 000                                                                                                                                                                | .1               | 6.9<br>6.8              |                            |                | 1.623                         | 8. 53° W<br>S. 53° W<br>S. 75° W | 3.0            | Inversion.                                       |
| 5 49.2<br>5 50.0           | 6,615<br>A 840                                                                                                                                                         | 354.5            | - 8.7<br>- 8.4          | 0.6<br>-0.1<br>-0.1<br>0.5 | 58<br>54<br>52 | 1.326                         | S. 45° W<br>S. 22° W             | 3.6<br>14.6    | Pressure pen not                                 |
|                            | 7,000                                                                                                                                                                  |                  | - 8.9<br>- 9.1          | 0.5                        | 50<br>49       | 1. 180<br>1. 137              | S. 11° W<br>S. 7° W              | 12.0<br>10.7   | tude computed<br>from ascensional                |
| 5 53.2                     | 7,750<br>8,000                                                                                                                                                         |                  | 13.0<br>14.5            | 0.6                        | 46<br>45       | 0.763<br>0.655                | 8. 14° W<br>S. 16° W<br>S. 18° W | 12.8           | rate.<br>6/10 S. Cu. SSE.                        |
| 5 56.2<br>5 56.8           | 8,215<br>8,650<br>8,850                                                                                                                                                |                  | -15.9<br>-19.5<br>-20.7 | 0.8<br>0.8                 | 45<br>45       |                               |                                  |                | Dallasma dicor.                                  |
| 5 57.7                     | 9,000<br>9,080                                                                                                                                                         |                  | -21.3 $-21.7$           | 0.4                        | 44             | 0.346<br>0.334                |                                  |                | Observations of ascension were                   |
| 5 59.8                     | 9,700<br>10,000                                                                                                                                                        |                  | -24.3 $-26.1$           | 0.4                        | 43<br>43       | 0. 256<br>0. 215              |                                  |                | made through<br>this film of St.<br>Cu. which at |
| 6 03.1<br>6                | 10,730                                                                                                                                                                 |                  | -28.7<br>-29.8<br>-31.5 | 0.3                        | 42<br>42       | 0.102<br>0.145<br>0.134       |                                  |                | times obscured                                   |
| 6 05.8                     | 11,575<br>12,000                                                                                                                                                       |                  | -35. 0<br>-35. 8        | 0.6                        | 42<br>41       | 0.077                         |                                  |                | 26.5 p. m.                                       |
| 6 09.4                     | 12,080<br>12,700                                                                                                                                                       |                  | -36.0<br>-37.2          | 0. 2<br>0. 2               | 41<br>40       | 0.076                         |                                  | •••••          |                                                  |
| 6                          | 13,000                                                                                                                                                                 |                  | -38.7<br>-39.8<br>-43.4 | 0.5                        | 40<br>40<br>40 | 0.049                         |                                  |                |                                                  |
| 6 13.8                     | 7,000<br>7,750<br>8,005<br>8,215<br>8,650<br>8,850<br>9,000<br>9,080<br>9,080<br>9,080<br>10,415<br>11,730<br>11,730<br>12,000<br>12,000<br>12,000<br>13,250<br>14,000 |                  | -43. 9                  | 0. 5                       | 40             | 0.031                         |                                  | ļ              |                                                  |

#### AUGUST 10, 1913.

|     |        |       |         |       |                         |      | ī              | · · · · · · · · · · · · · · · · · · · | 1   | i               |
|-----|--------|-------|---------|-------|-------------------------|------|----------------|---------------------------------------|-----|-----------------|
|     | . м.   |       |         |       |                         |      | ł              |                                       | i   |                 |
| 4   | 43.0   | 34    | 765.9   | 23.4  |                         | 58   | 12,077         | N. 46° E                              | 2.8 | Cloudless.      |
| á   | 45. 7  | 435   |         |       |                         | 57   | 10.522         | N. 24° E                              | 1.1 | Inversion.      |
| •   |        | 500   |         | 21.0  |                         | 52   | 9.937          | N. 5° E.                              | 1.7 |                 |
| 4   | 48. 2  | 832   | 690.3   | 24.7  |                         |      | 6.052          | N. 89° W                              | 4.0 |                 |
| •   | 20.0   | 1 000 |         | 24 5  |                         | Ži   | 4 654          | 8. 88° W                              | 3.5 |                 |
| - 4 | 49, 2  | 1 036 | 674.3   | 24. 5 | 0.1                     | 20   | 4 432          | 8. 87° W                              | 3.4 |                 |
|     | - 1    | 1 500 | 0, 2. 0 | 23.3  |                         | 15   | 3 106          | N. 47° W                              |     |                 |
|     | 52. 4  | 1 540 | 635.7   | 23. 2 | 0.3                     | 1 14 | 2 282          | N. 42° W                              | 2.ĭ |                 |
| 4   | 54.9   | 1 070 | 601.8   | 19. 3 |                         | 17   | 9 464          | N. 47° W                              | 2.1 | One balloon be- |
| 4   | 39.8   | 2,000 | 004.0   | 19.0  |                         | 15   | 0 401          | N. 47° W                              | 2.1 |                 |
| ••• |        | 1 200 |         | 19.0  |                         | 13   | 0 950          | N. 43° W                              | 2.2 |                 |
|     | -22-21 |       | 445.6   | 21.0  | 0.7                     | 10   | 2.000          | NT 409 337                            | 2.2 |                 |
| 5   |        |       | 647. 8  |       |                         | 10   | 3. 120         | N. 42° W<br>N. 23° W                  | 2.1 |                 |
| 5   | 03.0   | 1,253 | 657. 7  | 22. 4 |                         | y    | 1.770<br>1.773 | N. 23° W                              | 3.1 | orograph slowly |
|     | -::-:  | 1,000 |         | 24.5  | ··· <u>·</u> · <u>·</u> | 2    | 1.773          | N. 44° W                              |     |                 |
| 5   | 09.0   |       | 694.2   | 26. 2 | -0.3                    | 7    | 1,706          | N. 61° W                              | 1.5 |                 |
| 5   | 11.0   |       | 700.8   | 24.1  |                         |      |                |                                       |     |                 |
| 5   | 13.1   | 600   |         | 24.3  | -0.5                    |      |                |                                       |     | disappeared be- |
|     |        | 500   |         |       |                         | 16   | 3, 389         |                                       |     |                 |
| 5   |        |       |         | 23.0  | -1.8                    |      |                |                                       |     | tains.          |
| 5   | 18.3   | 263   | 737.1   | 21. 3 |                         | 44   | 8.122          |                                       |     | Inversion.      |
|     |        |       | !       |       |                         |      |                |                                       |     |                 |
| _   |        |       |         |       |                         |      |                |                                       |     |                 |

# (b) THE CAPTIVE BALLOON AND MOUNTAIN OBSERVATIONS ON AND NEAR MOUNT WHITNEY.

#### By W. R. Gregg.

Meteorological observations, including some captive balloon ascensions, were made at Mount Whitney, Cal., from August 1 to 13, inclusive, and at Lone Pine, Cal., from August 1 to 4, inclusive. Mount Whitney is the highest peak of the Sierra Nevadas, its altitude being 4,420 meters. It lies in latitude 36° 35′ N. and longitude 118° 17′ W. On the north, south, and west it is surrounded by mountains, many of which are nearly as high as itself; its eastern slope is quite precipitous and at its foot lies Owens Valley, which is about 25 kilometers in width and extends in a north-northwest and south-southeast direction. East of this valley and running parallel to the Sierras is the Inyo Range, altitude about 3,000 meters. Lone Pine is situated about midway between these two ranges, near the northern end of Owens Lake. Its altitude is 1,137 meters and it lies in latitude 36° 35′ N. and longitude 118° 3′ W., about 25 kilometers due east from Mount Whitney. Topographically the location of Lone Pine is similar to that of Independence, Cal., which is about 25 kilometers north-northwest of it and therefore practically the same distance from Mount Whitney. Independence is in latitude 36° 48′ N., longitude 118° 12′ W., and has an altitude of 1,191 meters, or 54 meters higher than that of Lone Pine.

#### SURFACE OBSERVATIONS AT MOUNT WHITNEY.

The instrumental equipment consisted of a Short and Mason aneroid barometer, sling psychrometer, small kite anemometer of the Robinson type, Marvin meteorograph, and Richard meteorograph. The Richard instrument recorded pressure and temperature only and the object in taking it was to obtain a surface record of these elements and also to provide a substitute in case the Marvin instrument were lost or injured. The latter recorded relative humidity in addition to pressure and temperature. In order to secure good ventilation during balloon ascensions a section of the horizontal screening tube containing the humidity and temperature elements had been cut out, thus exposing these elements directly to the air.

As soon as they were unpacked, both of these instruments were started recording and a continuous record of pressure, temperature, and relative humidity was obtained. The sheets were changed at 8 a.m. and 5 p.m., and eye readings of the aneroid barometer and psychrometer were taken at these times—at 11 a.m. and 2 p.m., and during balloon ascensions. In addition, readings of the psychrometer were taken by Messrs. A. K. Angström and E. H. Kennard, representing the Smithsonian Institution, during the nights when they were observing. These readings have also been used to check the meteorograph records.

The exposure of the instruments was fairly good. They were kept in an improvised shelter constructed from the boxes in which they were "packed" to the summit. The ventilation was good, but during those afternoons in which the sun shone, the air in the shelter was considerably heated. However, there were only four sunny afternoons, and furthermore the eye readings at 2 p. m. and 5 p. m. leave but little interpolation necessary.

All of the instruments were calibrated before and after the expedition. Especial care was taken in the calibration of the aneroid barometer, tests being made to determine the correction for "lag" or "creeping" and for changes in temperature. The effect of the latter was found to be negligible.

Owing to the large scale value of the pressure elements in the meteorographs and to the effect of changes of temperature on those elements, it is impossible to obtain with much accuracy the hourly values. However, in Table 5 are given the pressures observed at certain hours. The readings at 11 a. m. are uniformly higher than those at 8 a. m., 2 p. m., or 5 p. m. It is probable that the diurnal maximum occurs at about this time.

The range of pressure for the entire period is large, about 8 mm. The range for the same period at Independence is much less, about 5 mm. At both places the lowest readings were recorded on August 8 and 9, while a cyclonic disturbance was central over northern California. This low was attended by considerable cloudiness, with thunderstorms, and, at Mount Whitney, snowstorms. The greater pressure range at Mount Whitney than at Independence is accounted for by the cool weather during the passage of the low and the consequent crowding together of the isobars in the lower levels.

Tables 6, 7, and 8 contain the hourly values of temperature, relative humidity, and absolute humidity, respectively. Means have been computed for the 10

prevailed. However, the values at both places, compared with those at the same altitude above Mount Weather, indicate that in summer temperatures on mountains are higher than those in the free air, although difference in latitude, in this case about 2½°, should be considered. The times of maximum and minimum temperatures at Mount Whitney were 3 p. m. and 5 a. m., respectively; at Pikes Peak they were 1 p. m. and 5 a. m., respectively.

Figure 10 shows mean hourly temperatures at Mount Whitney and Independence and for the same period during 1893 and 1894 at Pikes Peak. The range at the latter appears to be somewhat smaller than at Mount Whitney, and this may be due to the fact that conditions at Pikes Peak are more nearly like those of the free air,



FIG. 8.—Pressure distribution in the western United States, July 29-August 13, 1913.

complete days, August 3 to 12, inclusive. Final conclusions may not be drawn from so short a record, but a few comparisons are of interest. The mean temperature was 0.7° C.; that in the free air at the same altitude and for the same time of year, as determined from five years' observations at Mount Weather, Va., is -2.0°. The mean temperature at Pikes Peak for these 10 days in 1893 and 1894 was 2.8°. Pikes Peak has an altitude of 4,301 meters, or about 100 meters below that of Mount Whitney, and to correct for this difference in altitude about 0°.6 should be subtracted from the value at Pikes Peak. The temperature at Mount Whitney was undoubtedly below normal, owing to the severe stormy weather which

owing to its isolation and the consequent freer circulation. The curve for Independence shows the large diurnal range characteristic of valley stations. Beneath the mean temperatures for Mount Whitney in Table 6 are given the means for the same period at Independence and the differences in temperature change per 100 meters altitude between the two places. The temperature change with altitude during the night hours is somewhat misleading, owing to a marked inversion of temperature between the surface of the valley and about 200 meters above it, as will be pointed out in discussing the Lone Pine observations. The hourly differences between Independence and Mount Whitney during the daytime are large, averaging about 0.85. The mean for the 24 hours is 0.73.

# MONTHLY WEATHER REVIEW.

## TABLE 5.—Pressures at Mount Whitney, Cal., Aug. 1-13, 1913.

|               |   |          |   |   |       |    |    |                         |       |       |                         | H     | ours.      |                         |       |               |                         |    |       |       |       |    |    |       | ļ    |
|---------------|---|----------|---|---|-------|----|----|-------------------------|-------|-------|-------------------------|-------|------------|-------------------------|-------|---------------|-------------------------|----|-------|-------|-------|----|----|-------|------|
| Date.         |   |          |   |   |       | Α. | м. |                         |       |       |                         |       |            |                         |       |               |                         | P. | м.    | ,     |       |    |    |       | Mean |
|               | 1 | 2        | 3 | 4 | 5     | 6  | 7  | 8                       | 9     | 10    | 11                      | 12    | 1          | 2                       | 3     | 4             | 5                       | 6  | 7     | 8     | 9     | 10 | 11 | 12    |      |
| 1913.<br>g. 1 |   |          |   |   | Mm.   |    |    | Mm.                     | Mm.   | Mm.   | Mm.                     | Mm.   | Mm.        | Mm.                     | Mm.   |               | Mm.                     |    | _     | Mm.   | Mm.   |    |    | Mm.   |      |
| 3             |   |          |   |   |       |    |    |                         | 446.8 | 447.0 | 447.6                   | 447.0 | 447.0      | 446.8                   | 446.5 |               | 447.0<br>446.0          |    |       |       | 446.5 |    |    |       |      |
| 5<br>6        |   |          |   |   |       |    |    | 446.8<br>445.5<br>444.2 |       |       |                         | 448.1 |            | 446.0<br>446.5<br>444.8 |       | · · · · · · · | 445.8<br>445.5<br>444.5 |    | ••••• | 446.3 |       |    |    | 446.0 |      |
| 7<br>8        |   |          |   |   |       |    |    | 444.8<br>442.7<br>438.7 |       | 1     | 445.3<br>442.5<br>439.2 |       |            | 445.3<br>441.4          |       |               | 443.5<br>440.7          |    |       |       |       |    |    |       |      |
| 10            |   |          |   |   |       |    |    | 440.4<br>441.4          |       |       | 441.2<br>442.0          |       |            | 438.9<br>440.4<br>441.7 |       |               | 438.9<br>440.2<br>440.4 |    |       |       |       |    |    |       | 1    |
| 12<br>13      |   | <u> </u> |   |   | 438.7 |    |    | 440.9                   |       |       | 441.7                   |       | <b>-</b> - | 440.9                   |       |               | 440.4                   |    |       |       |       |    |    |       |      |

Table 6.—Hourly temperatures at Mount Whitney, Cal., Aug. 1-13, 1913.

|       |            |                        |                     |                     |                      |                       |                     |                     |                        |                                                                                |                      |                             | H            | ours.             |                      |                   |                   |                      |                    |                            |                      |                       |                      |                    |                      |                   |
|-------|------------|------------------------|---------------------|---------------------|----------------------|-----------------------|---------------------|---------------------|------------------------|--------------------------------------------------------------------------------|----------------------|-----------------------------|--------------|-------------------|----------------------|-------------------|-------------------|----------------------|--------------------|----------------------------|----------------------|-----------------------|----------------------|--------------------|----------------------|-------------------|
| ]     | Date.      |                        |                     |                     |                      |                       | <b>A</b> .          | M.                  |                        |                                                                                |                      |                             |              |                   |                      |                   |                   |                      | P.                 | м.                         |                      |                       |                      |                    |                      | Means.            |
|       |            | 1                      | 2                   | 3                   | 4                    | 5                     | 6                   | 7                   | 8                      | 9                                                                              | 10                   | 11                          | 12           | 1                 | 2                    | 3                 | 4                 | 5                    | 6                  | 7                          | 8                    | 9                     | 10                   | 11                 | 12                   |                   |
| Aug.  | 1913.<br>1 | • c.                   | • c.                | ° C.                | ° C.                 | ° C.                  | • c.                | ° C.                | ° C.                   | • c.                                                                           | • c.                 | ° C.                        | • c.         | ° C.              | ° C.                 | ° C.              | • c.              | • c.                 | • c.               | ° C.                       | ° C.                 | ° C.                  | ° C.                 | ° C.               | • c.                 |                   |
|       | 2          | 1.4*<br>0.6*           | -1.9*<br>-1.1*      |                     |                      | -2.9<br>-1.7*         | -2.5<br>-1.8        | -1.8<br>-1.0        | 0.0*<br>0.7*           | 1.0<br>-0.7                                                                    | 2. 2*<br>0. 7        | 1.7*<br>2.1                 | 3.9*<br>3.9* | 2.3*<br>4.4       | 3.1*<br>4.8*         | 6.1*<br>4.9       | 5.0               | 4.8<br>4.7*          | 3.2<br>4.5         | 1.1<br>1.4*<br>1.9*        | 0.2*                 | -0.6<br>-0.2*<br>1.3* | -1.1*<br>0.0<br>1.1* | -1.2<br>-0.1*      | -1.4*<br>-0.4*       | 0.8               |
| į     | 5          | 0.6*<br>0.3*<br>1.9    | 0.2*<br>0.6*<br>1.8 | 0.2*<br>0.3*<br>1.7 | -0.1*<br>0.6*<br>1.6 |                       | -0.1                | 0.9<br>(1.6)<br>1.7 | 1.8*                   | 1.7<br>2.3<br>3.0                                                              | 3.0<br>3.8<br>3.3    | 2.1<br>4.2*<br>5.0*<br>4.4* | 5.6          | 5.8<br>6.2<br>5.9 | 6.6*<br>6.2*<br>6.7* | 7.0<br>6.4<br>7.0 | 5.5<br>6.6<br>6.8 | 4.3*<br>7.8*<br>3.9* | 4.0<br>7.5<br>4.4  | 1.9*<br>1.9*<br>4.5<br>3.8 | 1.8*<br>2.5*<br>1.9  | 1.2*<br>2.2<br>1.4    | 1.1*<br>2.1<br>1.5   | 1.1*<br>2.0<br>1.5 | 0.6*<br>2.0<br>1.4   | 2.4<br>3.3<br>3.2 |
| 10    | 8<br>9     | 1.0<br>-1.5<br>-3.1    | 0.7<br>1.5*         | 0.5<br>-1.5<br>-3.6 | 0.5                  | $0.5 \\ -1.5 \\ -3.7$ | 0.4<br>-1.7<br>-3.2 | 0.5<br>-1.8<br>-1.9 | 1.3*<br>-2.0*<br>-0.9* | $     \begin{array}{r}       1.3 \\       -2.4 \\       -1.0     \end{array} $ | -0.2<br>-0.4<br>-0.8 | -0.7*<br>-1.3*<br>-0.2*     | 0.2<br>-1.0  | 0.2               | 0.8*<br>0.2*<br>0.5* | $-0.3 \\ -2.0$    | 0.3               | 1.0*                 | -1.0 $-1.3$ $-0.9$ | $0.2 \\ -2.3$              | -0.6<br>-2.2<br>-1.7 | -1.1 $-2.2$ $-2.2$    | -1.3* $-2.4$ $-2.3$  | -1.4 $-2.6$        | -1.4<br>-2.7<br>-2.4 | 0.1<br>-1.6       |
|       | 1          | $-2.4 \\ -3.0 \\ -2.0$ | $-2.4 \\ -2.8$      | -2.5<br>-2.6*       |                      | -2.8<br>-2.5          | -2.8<br>-2.5        | -2.8                | -2.6*<br>-0.2*         |                                                                                | -1.0<br>1.3          | -0.1*<br>2.8*               | 0.3          | 1.4<br>4.4        | 2. 2*<br>5. 2*       | 2.7<br>5.6        | 2.5<br>4.0        | 2.4*<br>4.0*         | 2.0<br>4.0         | -0.6                       | -2.2*                | -2.3*<br>-1.4         | -2.4*                | $-2.7* \\ -1.3$    | -2.8                 | -1.0<br>0.4       |
| Means |            |                        |                     |                     |                      | 1                     | -1.1                | -0.6                | 0.1                    | 0.2                                                                            | 1.2                  | 1.8                         | 2.6          | 2.9               | 3.3                  | 3.7               | 3.2               | 3.1                  | 2.8                | 0.9                        | 0.0                  | -0.3                  | -0.4                 | -0.5               | -0.6                 | 0.7               |
| mea   | ns<br>100m | 18.6<br>0.60           | 17.8<br>0.58        | 17.2<br>0.57        | 16.8<br>0.54         | 16.5<br>0.55          | 16.7<br>0.55        | 20.4<br>0.65        | 22.9<br>0.71           | 25.2<br>0.78                                                                   | 26.9<br>0.80         | 29.2<br>0.85                | 30.6<br>0.87 | 31.2<br>0.88      | 31.4<br>0.87         |                   | 31.3<br>0.87      | 29.9<br>0.83         | 27.7<br>0.77       | 26.1<br>0.78               | 25.3<br>0.79         | 23.7<br>0.75          | 22.0<br>0.70         | 20.4<br>0.65       | 19.8<br>0.63         | 24.1<br>0.73      |

\* Eye readings.

Table 7.—Hourly relative humidities at Mount Whitney, Cal., Aug. 1-13, 1913.

|                 |                                                                      |                                                                      |                                                                      |                                                                    |                                                                      |                                                              |                                                              |                                                      |                                                            |                                                               |                                                            | H                                  | ours.                                                        |                                                               |                                                             |                                                            |                                                                   |                                                          |                                                                |                                                                 |                                                               |                                                                     |                                        |                                                                     |                                                          |
|-----------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------|------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|
| Date.           |                                                                      |                                                                      |                                                                      |                                                                    |                                                                      | <b>A</b> .                                                   | м.                                                           |                                                      |                                                            |                                                               |                                                            |                                    |                                                              |                                                               |                                                             |                                                            |                                                                   | P.                                                       | M.                                                             |                                                                 |                                                               |                                                                     |                                        |                                                                     | Means:                                                   |
|                 | 1                                                                    | 2                                                                    | 3                                                                    | 4                                                                  | 5                                                                    | 6                                                            | 7                                                            | 8                                                    | 9                                                          | 10                                                            | 11                                                         | 12                                 | 1                                                            | 2                                                             | 3                                                           | 4                                                          | 5                                                                 | 6                                                        | 7                                                              | 8                                                               | 9                                                             | 10                                                                  | 11                                     | 12                                                                  |                                                          |
| 1913.<br>Aug. 1 | 92*<br>69*<br>52*<br>43*<br>68<br>93<br>86<br>96<br>100<br>31*<br>15 | 92*<br>71*<br>52*<br>40*<br>68<br>93<br>87*<br>93<br>100<br>26<br>19 | (80)<br>55<br>47*<br>29*<br>69<br>92<br>87<br>90<br>100<br>20*<br>19 | 42<br>36*<br>50*<br>34*<br>69<br>92<br>87<br>85<br>96<br>18*<br>19 | (50)<br>45*<br>51<br>(42)<br>69<br>92<br>88<br>80<br>94<br>18<br>23* | (60)<br>50<br>52<br>(50)<br>69<br>91<br>90<br>85<br>94<br>30 | (70)<br>64<br>55<br>(58)<br>69<br>85<br>94<br>87<br>63<br>40 | 79*<br>64*<br>56*<br>69*<br>78*<br>95*<br>86*<br>50* | (80)<br>68<br>48<br>64<br>68<br>80<br>95<br>85<br>41<br>48 | 80*<br>(74)<br>40<br>50<br>65<br>92<br>(92)<br>86<br>41<br>46 | 79*<br>77<br>32*<br>57*<br>63*<br>93*<br>89*<br>41*<br>43* | 74** 77* 34 (58) 63 96 85 93 41 43 | 81*<br>72<br>34<br>(59)<br>64<br>100<br>90<br>92<br>41<br>43 | 76*<br>51*<br>36*<br>60*<br>100*<br>100*<br>91*<br>41*<br>43* | 55*<br>60<br>40<br>58<br>66<br>100<br>100<br>88<br>45<br>47 | 60<br>62<br>45<br>57<br>68<br>100<br>98<br>100<br>73<br>56 | 68<br>62*<br>49*<br>57*<br>70*<br>82*<br>97*<br>93*<br>77*<br>62* | 71<br>67<br>52<br>55<br>75<br>82<br>99<br>94<br>72<br>50 | 80*<br>75*<br>54*<br>58<br>100<br>84<br>100<br>100<br>67<br>72 | 78*<br>66*<br>51*<br>70<br>100<br>85<br>100<br>100<br>63*<br>76 | 85*<br>51*<br>55*<br>70<br>95<br>86<br>100<br>94<br>41*<br>54 | 75*<br>78<br>45*<br>43*<br>70<br>94<br>86*<br>99<br>99<br>40*<br>54 | 97* 70* 52* 38* 70 93 84 99 100 33* 15 | 93*<br>72*<br>51*<br>42*<br>66<br>93<br>85<br>98<br>100<br>31<br>15 | 73<br>61<br>46<br>56<br>75<br>90<br>94<br>92<br>62<br>42 |
| Means           | 73                                                                   | 72                                                                   | 67                                                                   | 61                                                                 | 63                                                                   | 67                                                           | 68                                                           | 69                                                   | 68                                                         | 67                                                            | 67                                                         | 66                                 | 68                                                           | 66                                                            | 66                                                          | 72                                                         | 72                                                                | 72                                                       | 79                                                             | 79                                                              | 73                                                            | 71                                                                  | 65                                     | 66                                                                  | 69                                                       |

Table 8 .- Absolute humidities in grams per cubic meter at Mount Whitney, Cal., Aug. 1-13, 1913.

|               |              |                |             |              |                |              |              |              |            |              |              | H          | ours.             |              |            |            |              |            |              |             |             |             |             |              |      |
|---------------|--------------|----------------|-------------|--------------|----------------|--------------|--------------|--------------|------------|--------------|--------------|------------|-------------------|--------------|------------|------------|--------------|------------|--------------|-------------|-------------|-------------|-------------|--------------|------|
| Date.         |              |                |             |              |                | Α.           | м.           |              |            |              |              |            |                   |              |            |            |              | Р.         | м.           |             |             |             |             |              | Mean |
|               | 1            | 2              | 3           | 4            | 5              | 6            | 7            | 8            | 9          | 10           | 11           | 12         | 1                 | 2            | 3          | 4          | 5            | 6          | 7            | 8           | 9           | 10          | 11          | 12           |      |
| 1913.<br>g. 1 |              |                |             |              |                |              |              |              |            |              | <br>         |            |                   | <br>         |            |            |              |            |              |             |             |             | 3.7*        |              | <br> |
| 2<br>3        | 4.0*         | 3.8*           | (3.3)       | 1.6          | (1.9)          | (2.4)        | (2.9)        | 3.8*         | (4, 1)     | 4.5*         | 4.3*         | 4.7*       | 4.6*              | 4.5*         | 4.0*       | 4.2        | 4.5          | 4.3        | 4.3*         | 3.8*        | 4.0*        | 3.3*<br>3.8 | 3.4*        | 4.0*<br>3.4* |      |
| 5             | 3.2*<br>2.6* | 3. 1*<br>2. 5* | 2.4<br>2.3* | 1.6*<br>2.4* | 1.9*<br>2.4    | 2.1          | 2.9          | 2.9*<br>3.1* | 3.1<br>2.6 | (3.8)        | 4.3<br>2.1*  | 2.3        | 4.7<br>2.4        | 3.4*<br>2.7* | 4.0<br>3.1 | 4.2<br>3.1 | 4.1*<br>3.2* | 4.4<br>3.3 | 4.1*<br>3.0* | 3.5*        | 2.7*        | 2.3*        | 2.6*        | 2.6*         |      |
| 6<br>7        | 2.1*<br>3.7  | 2.0*<br>3.7    | 1.4*<br>3.7 | 1.7*<br>3.7  | $(2.1) \\ 3.7$ | (2.6)<br>3.7 | (3.1)<br>3.7 | 3.7*<br>3.8* | 3.6<br>4.0 | 3.1          | 3.9*<br>4.1* | 4.3        | $(4.3) \\ 4.6$    | 4.4*         | 4.3<br>5.1 | 4.3<br>5.2 | 4.6*         | 4.4        | 3.8<br>6.2   | 4.0*<br>5.5 | 3.9<br>5.1  | 3.9<br>5.0  | 3.9<br>5.0  | 3.7<br>4.9   |      |
| 8             | 4.8<br>3.7   | 4.7<br>3.7     | 4.6<br>3.7  | 4.6<br>3.7   | 4.6<br>3.8     | 4.5<br>3.8   | 4.3<br>3.9   | 4.1*<br>3.9* | 4.2<br>3.8 | 4.4<br>(4.3) | 4.3*<br>3.9* | 4.7<br>3.8 | $\frac{4.9}{4.2}$ | 4.5*         | 4.7        | 4.9<br>4.3 | 4.2*<br>4.3* | 4.2        | 4.1<br>4.0   | 3.9<br>4.1  | 3.8<br>4.1  | 3.8*<br>4.0 | 3.6<br>3.9  | 3.7<br>3.8   |      |
| 10            | 3.6          | 3.4            | 3.3         | 3.1          | 2.9            | 3.2          | 3.6          | 3.9*         | 3.8        | 3.9          | 4.5*         | 4.5        | 4.2               | 4.2*         | 4.1        | 3.8        | 4.3*         | 4.2        | 4.4          | 4.2         | 3.8         | 4.0         | 4.0         | 4.0          | 1    |
| 11            | 4.0<br>1.2*  | 4.0<br>1.0     | 4.0<br>0.8* | 3.7<br>0.7*  | 3.6<br>0.7     | 3.6<br>1.2   | 2.4<br>1.7   | 2.0*<br>2.4* | 1.6<br>2.3 | 1.9<br>2.4   | 2.0*         | 2.0<br>2.6 | $\frac{2.2}{2.8}$ | 2.3*         | 2.6        | 4.2<br>3.5 | 4.4*<br>3.9* | 4.0<br>3.2 | 3.1<br>3.4   | 3.6*        | 1.7*<br>2.3 | 1.6*<br>2.3 | 1.3*<br>0.7 | 1.2          |      |
| 13            | 0.6          | 0.8            | 0.8         | 0.7          | 0.9            |              |              |              |            |              |              |            | ļ                 |              |            |            |              |            |              |             |             | ļ           |             |              | ļ    |
| eans          | 3.3          | 3.2            | 3.0         | 2.7          | 2.8            | 3.0          | 3.1          | 3.4          | 3.3        | 3.5          | 3.6          | 3.8        | 3.9               | 3.8          | 3.9        | 4.2        | 4.2          | 4.1        | 4.0          | 3.8         | 3.4         | 3.3         | 3.0         | 3.0          | !    |

\*Indicates eye-readings. () inclose estimated values. All others from meterograph records.

Table 9.—Wind velocities, in meters per second, at Mount Whitney, Cal., during August, 1913.

|                |   |   |   |   |                                                                           |    |    |   |   |                                                             |     | Hot | urs.                                                               |     |     |                                                                    |   |                      |         |          |                                                                           |    |     |    |
|----------------|---|---|---|---|---------------------------------------------------------------------------|----|----|---|---|-------------------------------------------------------------|-----|-----|--------------------------------------------------------------------|-----|-----|--------------------------------------------------------------------|---|----------------------|---------|----------|---------------------------------------------------------------------------|----|-----|----|
| Date.          |   |   |   |   |                                                                           | Δ, | м. |   |   |                                                             |     |     |                                                                    |     |     |                                                                    |   | P.                   | м.      |          |                                                                           |    |     |    |
|                | 1 | 2 | 3 | 4 | 5                                                                         | 6  | 7  | 8 | 9 | 10                                                          | 11  | 12  | 1                                                                  | 2   | 3   | 4                                                                  | 5 | 6                    | 7       | 8        | 9                                                                         | 10 | 11  | 12 |
| 1913.<br>ug. 1 |   |   |   |   |                                                                           |    |    |   |   |                                                             |     |     |                                                                    |     |     |                                                                    |   |                      |         | <u> </u> |                                                                           |    |     |    |
| 2              |   |   |   |   | 2.6<br>3.8<br>1.8<br>3.4<br>3.6<br>3.0<br>2.0<br>1.4<br>3.5<br>3.7<br>5.6 |    |    |   | * | 3.8<br>1.5<br>0.9<br>3.7<br>2.4<br>2.8<br>1.4<br>4.1<br>4.9 | 1.3 | 1.8 | 1.8<br>2.2<br>2.8<br>1.9<br>5.5<br>3.1<br>2.4<br>2.1<br>3.7<br>5.7 | 1.3 | 1.3 | 1.8<br>1.5<br>2.1<br>1.2<br>3.6<br>1.5<br>3.7<br>2.8<br>3.7<br>4.6 |   | **<br>**<br>**<br>** | 2.1 1.3 | 3        | 2.6<br>3.6<br>2.5<br>3.4<br>3.6<br>3.0<br>2.0<br>1.4<br>3.5<br>3.7<br>5.6 |    | 3.8 |    |

Mean velocity for entire period, 3 m, p, s.

NOTE.—Anemometer read at the times indicated by \*; figures are mean velocities between readings.

TABLE 10 .- State of weather at Mount Whitney, Cal., during August, 1913.

|                   |               |     |       |     |      |      |             |     |       |         |             |                             |            |               | Но           | ars.  |             |   |       |             |                      |              |       |          |                                                                                                               |
|-------------------|---------------|-----|-------|-----|------|------|-------------|-----|-------|---------|-------------|-----------------------------|------------|---------------|--------------|-------|-------------|---|-------|-------------|----------------------|--------------|-------|----------|---------------------------------------------------------------------------------------------------------------|
| Date.             |               |     |       |     |      | ▲.   | м.          |     |       |         |             |                             |            |               |              |       |             | 1 | Р. М. |             |                      |              |       |          | :                                                                                                             |
| !                 | 1             | 2   | 3     | 4   | 5    | 6    | 7           | 8   | 9     | 10      | 11          | 12                          | 1          | 2             | 3            | 4     | 5           | 6 | 7     | 8           | 9                    | 10           | 11    | 12       | Remarks.                                                                                                      |
| 1913.<br>Aug. 1.  |               |     |       |     |      |      |             |     |       |         |             |                             |            |               |              |       | <del></del> |   |       | Clo         | udy.                 |              | Clea  | ·        | *, [ until 10 p. m.                                                                                           |
| 2.<br>3.<br>4.    | $\Rightarrow$ | Pt. | cldy. | Cle | ar.  | Pt.  | cldy.       | -   |       |         |             | Clou<br>Clou<br>Cles        | dy.<br>ur. | $\Rightarrow$ | <del>-</del> | Pt.   | eldy.       |   | Cldy. | Cl          | ear.<br>ear.<br>ear. |              |       |          | *, [3 in p. m.<br>≡ 2a, Cu. from SE.<br>Cu. from S. 4 in NE. in evening.<br>Cu. & Cu. N. from S.; 4 in NE. in |
| 6.<br>7.          |               |     |       |     |      | ear. |             |     |       | <b></b> |             | Pt. c                       | ldy.       | _             |              | Pt. ( | eldy.       |   |       |             | ear.<br>udy.         |              |       |          | evening. Cu. & Cu. N. from S.; R near by in p. m R nearby: * 5:30 p.—12 p.                                    |
| 8.<br>9.<br>10.   | Clear<br>Pt.  | Pt. | cldy. | Cl  | ear. |      | <del></del> | Pt. | eldy. |         | <del></del> | Clou<br>Clou<br>Clou<br>Cle | dy.<br>dy. |               |              |       |             |   |       | <del></del> | Pt.                  | eldy.<br>Pt. | Cldy. | аг.      | *—1:30 p.<br>Snow squalls. ★26 p.; ≡2.<br>★29:30 a. —9 p.<br>Cu. from east and southeast.                     |
| 11.<br>12.<br>13. |               | ·   | cldy. |     |      |      |             |     |       |         |             | Cle                         |            |               |              |       |             |   |       |             |                      |              |       | <b>-</b> | Cu. from south. Ci. and S. cu. from south.                                                                    |

The relative humidity, Table 7, was probably higher than normal for this season of the year, owing to the unusually stormy weather and the presence of snow on the ground. The mean was 69 per cent, the mean maximum 79 per cent at 7 to 8 p. m., and the mean minimum 61 per cent at 4. a. m. During the severe storm of August 8, 9, and 10, 100 per cent was frequently recorded. The absolute minimum was 15 per cent at midnight of the 12th.

For the reasons given above, the absolute humidity, Table 8, was also probably higher than normal. The mean was 3.5 grams per cubic meter, the mean maximum 4.2 at 4 to 5 p. m., and the mean minimum 2.7 at 4 a. m. The absolute maximum was 6.2 at 7 p. m. of the 7th and the absolute minimum 0.6 at midnight of the 12th.

Table 9 gives roughly the average wind velocities. Dial readings of the anemometer were made at the times indicated by stars. The figures between these stars represent average velocities for the intervals between readings. The mean for the entire period was 3.0 m. p. s. That at Pikes Peak for the same time of year was 6.0 m. p. s. This difference may be due partly to the fact that Pikes Peak stands out in the open, whereas Mount Whitney is surrounded by peaks nearly as high as itself, and also to the greater proximity of Pikes Peak to the

Mount Whitney and about 10 meters below it. This was the only spot on the mountain that was fairly level and free from jagged surface rocks. While the balloon was being filled with gas it rested on a large piece of canvas to protect it from rocks and snow. The gas, compressed in steel cylinders, was furnished by the Signal Corps of the United States Army. A hand reel was used for reeling the wire in and out. Readings of the psy-



Fig. 9.—Horizontal projections of the paths of the sounding balloous liberated at Avalon, Cal., July 23-August 10, 1913.

cyclonic storm paths of the United States. The prevailing wind direction was southeast, but directions ranging between south and northeast were frequently observed, and a southwesterly wind prevailed during the blizzard of August 9.

In Table 10 may be found the state of the weather for the period, together with notes on storms, kinds of clouds, and miscellaneous phenomena.

# FREE-AIR OBSERVATIONS AT MOUNT WHITNEY, CAL.

The place from which balloon ascensions were made was about 60 meters to the northwest of the summit of

chrometer, aneroid barometer, and anemometer were made with the aid of a pocket electric flash lamp.

Ascensions were made on only three nights, August 3, 4, and 5, and were begun immediately after sundown. On all other nights the weather was either too windy or too stormy. The balloon was allowed to take as great an altitude as possible and was then kept out until the wind aloft had increased to such an extent that it was necessary to reel in.

Table 11 contains the tabulated data for the three records obtained, and in figures 11 and 12 are plotted the temperature and absolute humidity gradients, re-

spectively; the slight changes with time at the higher levels in each ascension are not plotted; only the ascent and descent proper. On August 3 and 4 these elements diminished with time by nearly the same amounts at all upper levels as at the surface. There was but little wind during these nights. An August 5, however, there was a fairly high northeast wind aloft and the temperature and humidity changed very little with time. The change with altitude in temperature was greater and in absolute humidity less than on the other nights.

Table 11.—Results of captive balloon ascensions at Mount Whitney, Cal., Aug. 3-5, 1913.

|                          |       | Sur            | ace.    |                 | A       | t differ | ent hei        | ghts al | bove sea | ١.    |
|--------------------------|-------|----------------|---------|-----------------|---------|----------|----------------|---------|----------|-------|
| Date and hour.           | Pres- | Tem-           | Rel.    | Wind            | Height, | Pres-    | Tem-           | Hun     | idity.   | Wind  |
|                          | sure. | pera-<br>ture. | hum.    | direc-<br>tion. | ueigut. | sure.    | pera-<br>ture. | Rel.    | Abs.     | dir.  |
| Aug. 3, 1913:            | Mm.   | • C.           | %<br>80 |                 | м.      | Mm.      | • c.           | %       | g/cu.m.  |       |
| 7:13 p. m                | 446.2 | 0.6            | ່ ຂຶ້   | s.              | 4,410   | 446.2    | 0.6            | ′šo     |          | s,    |
| 7:18 p. m                |       | 0.3            | 81      | s.              | 4,533   | 439.3    | -0.2           | 65      | 3.1      | ese.  |
| 7:25 p. m                |       | 0.1            | 80      | 8.              | 4,631   | 434.0    | -0.9           | 65      | 2.9      | ese.  |
| 7:35 p.m                 |       | 0.3            | 78      | calm.           | 4,689   | 430.9    | -1.5           |         |          | е.    |
| 7:45 p.m                 |       | 0.2            | 78      | calm.           | 4,801   | 424.9    | -2.3           |         | <b></b>  | e.    |
|                          |       | 0.3            | 75      | e.              | 4,683   | 431.2    | -0.8           | 29      | 1.3      | e.    |
| 7:58 p.m                 |       | 0.3            |         | e.              | 4,801   | 424.9    | -1.5           | 18      |          | e.    |
| 8:06 p. m                | 446.3 | 0.3            |         | e.              | 4,744   | 427.9    | -1.3           | 16      |          | е.    |
| 8:10 p.m                 | 446.4 | 0.2            |         | e.              | 4,802   | 424.9    | -2.3           | 13      |          | e.    |
| 8:15 p.m                 |       | 0.2            |         | 6.              | 4,664   | 432. 4   | -2.0           | 26      |          | e.    |
| 8:18 p. m                |       | 0.1            | 78      | ene.            | 4,579   | 437.0    | -1.5           | 67      |          | ene.  |
| 8:31 p.m                 | 446.4 | 0.6            | 79      | ene.            | 4,509   | 440.9    | -0.7           | 68      |          | ene.  |
| 8:41 p.m                 |       |                | 85      | ene.            | 4,410   | 446.5    | -0.2           | 85      |          | ene.  |
| 8:51 p. m                | 446.5 | -0.2           | 80      | еце.            | 2,410   | 220.0    | -0.2           | 90      | 2.0      | сие.  |
| lug. 4, 1913:            | 446.1 | 2.3            | 77      | calm.           | 4,410   | 446.1    | 2.3            | 77      | 4.4      | calm. |
| 6:45 p. m                | 446.2 | 2.2            | 78      | calm.           | 4,627   | 434.3    | 1.4            | ••      | 7. 7     | calm. |
| 6:49 p. m                | 446.2 | 2.0            | 76      | calm.           | 4,852   | 422.3    | -0.9           | 64      | 2.9      | calm. |
| 6.56 p. m                |       | 1.8            | 74      | calm.           | 5.104   | 409.1    | -0. 8<br>-2. 2 | 37      |          | calm. |
| 7:04 p.m                 |       | 1.6            | 72      | calm.           | 5,359   | 396.1    | -4.8           | 34      |          | SSW.  |
| 7:12 p.m                 |       |                | 71      | calm.           | 5,230   | 402.6    | -4.4           | 33      |          | s.    |
| 7:22 p.m                 |       | 1.6            | 70      | calm.           | 5.316   | 398.3    | -5.6           | 24      | 0.7      | wsw.  |
| 7:45 p. m                |       | 1.3            | 67      | calm.           | 5,216   | 403.3    | -4.9           | 23      | 0.8      | wsw.  |
| 7:56 p.m                 |       |                | 60      | е.              | 5,258   | 401.2    | -4.4           | 19      |          | sw.   |
| 8:25 p.m                 |       | 1.1            | 55      | calm.           | 5,201   | 404.0    | -3.6           | 12      | 1        | ssw.  |
| 8:55 p.m                 |       | 1.1            | 50      | calm.           | 5,229   | 402.6    | -3.6           | 12      |          | SSW.  |
| 9:13 p. m                |       |                | 46      | calm.           | 5, 299  | 399.0    | -5.6           | 12      | 0.4      | S.    |
| 9:39 p.m                 |       | 0.9            | 45      | calm.           | 5, 198  | 404.0    | -4.3           | 12      | 0.4      | s.    |
| 10:00 p. m<br>11:45 p. m |       | 0.8            | 51      |                 | 4,634   | 433.6    | -1.9           | 10      | 0.4      | e.    |
|                          |       | 0.6            | 51      | e.<br>e.        | 4,509   | 440.5    | -0.7           | 23      | 1.1      | 0.    |
| 11:50 p. m<br>12:00 mdt  | 446.0 | 0.6            | 51      | e.              | 4,410   | 446.0    | 0.6            | 51      | 2.6      | e.    |
| Aug. 5, 1913:            | 220.0 | 0.0            | ٠,      | ٥.              | 2, 210  | 220.0    | 0.0            | 0.1     | 2.0      | ь.    |
| 6:38 p. m                | 446.0 | 2.8            | 51      | calm.           | 4,410   | 446.0    | 2.8            | 51      | 3.0      | calm. |
| 6:54 p. m                |       | 2.5            | 52      | calm.           | 4,625   | 434.3    | 0.8            | 54      | 2.8      | SW.   |
| 7:30 p. m                |       | 1.8            | 50      | calm.           | 4, 810  | 424.4    | -1.4           | 54      | 2.3      | ne.   |
| 7:37 p. m                |       | 1.8            | 45      | calm.           | 4,995   | 414.7    | -2.8           | 54      | 2.1      | ne.   |
| 7:52 p. m                |       | 1.9            | 47      | calm.           | 4,997   | 414.7    | -3.5           | 54      | 2.0      | ne.   |
| 8:05 p. m                |       | 1.8            | 53      | calm.           | 4,898   | 419.9    | -2.7           | 54      | 2.1      | ne.   |
| 8:17 p. m                |       | 1.7            | 57      | calm.           | 4,999   | 414.7    | 3.4            | 54      | 2.0      | ne.   |
| 8:42 p.m                 |       | 1.3            | 55      | calm.           | 4,861   | 422.1    | -1.8           | 54      | 2.3      | ne.   |
|                          |       | 1.3            | 55      | calm.           | 4,736   | 428.9    | -0.3           | 53      | 2.5      | ne.   |
| 8:56 p. m                |       |                | 55      | ne.             | 4,820   | 424.4    | _1.1           | 53      | 2.4      | ne.   |
| 9:05 p.m                 |       | 1.3            |         |                 |         |          | -0.3           | 51      | 2.4      |       |
| 9:20 p.m                 |       | 1.3            | 51      | ne.             | 4,734   | 428.9    |                | 48      | 2.4      | ne.   |
| 9:44 p. m                |       | 1.2            | 46      | ne.             | 4,604   | 435.8    | 1.0            | 38      |          | ne.   |
| 11:00 p. m               | 446.1 | 1.1            | 38      | 110.            | 4,410   | 446.1    | 1.1            | 38      | 2.0      | ne.   |

Aug. 3, 1913.—One captive balloon was used; capacity, 28.6 cu. m-Few Cu., from the east, prevailed throughout the ascension.
Aug. 4, 1913.—One captive balloon was used; capacity, 28.6 cu. m.;

lifting force at beginning of ascension, 5.4 kg.

Few Cu., from the south, at 7 p. m. Cloudless by 9 p. m. Lightning was seen over or near Death Valley. There was considerable electricity on the wire.

Aug. 5, 1918.—One captive balloon was used; capacity, 28.6 cu. m. Few Cu., direction unknown, in early evening. Cloudless after 8.50 p. m. Lightning was seen on the eastern horizon, near Death Valley.

Table 12.—Temperature differences at 100-meter intervals above Mount Whitney, Cal., Aug. 3, 4, 5, 1913.

| 1             |      |      |      | Altitu | des (m | eters). |      |      |      |
|---------------|------|------|------|--------|--------|---------|------|------|------|
| Observations. | 100  | 200  | 300  | 400    | 500    | 600     | 700  | 800  | 900  |
| Aug. 3, 1913: |      |      |      |        |        |         |      | -    |      |
| Ascent        | 0.6  | 0.8  | 0.9  | 0.6    | l      |         | L    |      |      |
| Descent       | 0.5  | 1.0  | 0.4  | 0.2    |        |         |      |      |      |
| Aug. 4, 1913: | ***  |      |      | •      |        |         | ,    |      |      |
| Ascent        | 0.4  | 0.4  | 0.9  | 1.0    | 0.7    | 0.5     | 0.6  | 1.0  | 1.0  |
| Descent       | 1.3  | 1.0  | 0.5  | 0.4    | 0.5    |         | 0.4  | 0.4  | 0.4  |
| Aug. 5, 1913; |      |      |      |        | ***    | 1       |      | J *  | 0    |
| Ascent        | 0.9  | 1.0  | 1.1  | 1.2    | 0.8    | 0.8     |      | ł l  |      |
| Descent       | 0.1  | 0.1  | 0.9  | 1.2    | 1.1    | 1.2     |      |      |      |
| Means         | 0.63 | 0.72 | 0.77 | 0.77   | 0,78   | 0.72    | 0.50 | 0.70 | 0.70 |

Table 12 contains the temperature differences at 100meter intervals above the surface, as observed in all three ascensions. The mean gradient is 0.70 and is fairly constant at all altitudes up to 900 meters.



Fig. 10.—Mean hourly temperatures at Mount Whitney and Independence, Cal., August 3 to 12, Incl., 1913, and at Pikes Peak, Col., August 3 to 12, Incl., 1893 and 1894.



Fig. 11.—Temperature gradients (°C.), above Mount Whitney, Cal., August 3, 4, and 5, 1913.



Fig. 12.—Absolute humidity gradients, grams per cubic meter, above Mount Whitney, Cal., August 3, 4, and 5, 1913.

#### FREE-AIR OBSERVATIONS AT LONE PINE, CAL.

The balloon ascensions were carried out by Mr. P. R. Hathaway from a place about 1 kilometer north of Lone Pine. The instrumental and other equipment was similar to that used at Mount Whitney. Owing to leakage of a large number of gas tubes, only four ascensions were possible. These were made on August 1, 2, 3, and 4 and were begun shortly after sundown. Surface conditions for making ascensions at this time of day were usually excellent.

The records obtained in the balloon ascensions are given in tabular form in Table 13. Figures 13 and 14 show the temperature and absolute humidity gradients, respectively. There was always a marked inversion of temperature between the surface and 200 meters above it, amounting on the average to 6° C. (See Table 14.) From 200 to 300 meters there was practically no change, but above 300 meters the temperature decreased with altitude at a fairly uniform rate, the mean difference per 100 meters being 0.73. On August 2 there was about equal cooling with time at all levels; on the 4th the tem-



Fig. 13.-Temperature gradients (°C.), above Lone Pine, Cal., August 1, 2, 3, and 4, 1913.

Table 13.—Results of captive balloon observations at Lone Pine, Cal., Aug. 1-4, 1913.

|                        |                  | Surf  | ace.        |                | A              | t differe | nt hei | ghts al  | ove sea | •            |
|------------------------|------------------|-------|-------------|----------------|----------------|-----------|--------|----------|---------|--------------|
| Date and hour.         | Pres-            | Tem-  | Rel.        | Wind<br>direc- | Height.        | Pres-     | Tem-   | Hun      | idity.  | Wind         |
|                        | sure.            | ture. | hum.        | tion.          | Hoight.        | sure.     | ture.  | Rel.     | Abs.    | dir.         |
| Aug. 1, 1913:          | Mm.              | ° C.  | %<br>79     |                | м.             | Mm.       | °C.    | %        | g/cu.m. |              |
| 9:18 p. m              | 660.3            | 16.7  | <b>7</b> 79 | calm.          | 1,137          | 660.3     | 16.7   | 79       | 11.1    | calm.        |
| 9:30 p. m              | 660.4            | 16.7  | 79          | calm.          | 1,190          | 656.3     | 21. 1  | 50       | 9. 1    | w.           |
| 9:37 p. m              | 660. 5           | 16.8  | 78          | calm.          | 1,296          | 648.5     | 22. 2  | 37       | 7.2     | w.           |
| 9:44 p. m              | 660.6            | 17.2  | 77          | calm.          | 1,297          | 648.5     | 21.4   | 37       | 6.9     | w.           |
| 10:10 p. m             | 660.8            | 18.3  | 72          | w.             | 1,311          | 647.7     | 23.0   | 28       | 5.7     | w.           |
| 10:15 p. m             | 660.8            | 16.7  | 80          | calm.          | 1,470          | 636.0     | 23. 1  | 24       | 4.9     | w.           |
| 10:43 p. m             | 661.0            | 16.7  | 78          | s.             | 1,204          | 655.8     | 22.3   | 46       | 9.0     | s.           |
| 10:48 p. m             | 661.1            | 16.7  | 78          | s.             | 1,137          | 661.1     | 16. 7  | 78       | 11.0    | s.           |
| Aug. 2, 1913:          |                  |       |             | 1              |                |           |        |          |         |              |
| 7:38 p. m              | 658. 3           | 23.9  | 46          | nnw.           | 1,137          | 658.3     | 23.9   | 46       | 9. 9    | nnw.         |
| 7:41 p. m              | 658. 5           | 24.2  |             | nnw.           | 1, 253         | 649. 9    | 27. 2  | 30       | 7. 7    | n.           |
| 7:47 p. m              | 658.8            | 22.6  |             | nnw.           | 1,355          | 642.8     | 27.1   | 17       | 4.4     | n.           |
| 8:01 p. m              | 659. 3           | 19.4  | 64          | 8.             | 1,958          | 600.4     | 23.0   | 17       | 3. 5    | calm.        |
| 8:48 p. m              | 660.0            | 19.7  |             | calm.          | 2,273          | 579.8     | 19.2   | 23       | 3.8     | se.          |
| 9:30 p. m              | 660.9            | 18.6  | 66          | calm.          | 1,811          | 612.1     | 22.7   | 20       | 4.0     | se.          |
| 10:48 p. m             | 662.6            | 17.5  |             | 8.             | 1,734          | 618.9     | 22.9   | 20       | 4.0     | sw.          |
| 10:56 p. m             | 662.8            | 18.0  |             | 8.             | 1,728          | 619.7     | 21.9   | 21       | 4.0     | sw.          |
| 11:05 p. m             | 662.9            | 16.4  |             | 8.             | 1,432          | 641.0     | 24.3   | 23       | 5.0     | se.          |
| 11:13 p. m             |                  | 16.7  |             | 8.             | 1,316          | 649. 4    | 25.6   | 21       | 5.0     | e.           |
| 11:19 p. m             | 662.9            | 17.0  |             | w.             | 1,234          | 655.5     | 25.5   | 21       | 4.9     | e.           |
| 11:25 p. m             | 662. 9           | 17.2  | 70          | w.             | 1, 137         | 662. 9    | 17.2   | 70       | 10.2    | w.           |
| Aug. 3, 1913:          | 661.8            | 21.7  | -4          |                | 1 107          | 661.8     | 01.5   |          | 100     |              |
| 7:17 p. m              |                  |       | 54          | calm.          | 1,137          |           | 21.7   | 54       | 10.2    | calm.        |
| 7:21 p. m              | 661. 9<br>664. 5 | 21.7  | 54          | calm.          | 1,296          | 650.0     | 28.4   | 26       | 7.2     | 29e.         |
| 9:25 p. m              | 004. 0           | 22. 9 | 37          | ssw.           | 1,137          | 664. 5    | 22. 9  | 37       | 7.5     | 85W.         |
| Aug. 4, 1913:          | 656. 9           | 19.9  | 58          | calm.          | 1 107          | 656. 9    | 19.9   | 58       | 9.9     | calm.        |
| 7:19 p. m<br>7:22 p. m | 657.0            | 19.8  | 57          | calm.          | 1,137<br>1,309 | 644.4     | 30.6   | 99       | 9.9     |              |
| 7:34 p. m              | 657. 4           | 21.0  | 43          | caim.          |                | 572.2     | 23.2   |          |         | se.          |
| 7:56 p. m              | 658.2            | 22. 2 | 39          |                | 2,367<br>2,106 | 589.9     | 24.4   | <b>-</b> |         | se.          |
| 8:02 p. m              | 658.3            | 22. 7 |             | 8.<br>8.       | 1,629          | 622.7     | 28.9   |          |         | 88e.<br>88e. |
| 8:05 p. m              | 658.3            | 23.0  | 38          |                | 1,629          | 634.9     | 30.6   |          |         |              |
| 8:55 p. m              | 658.2            | 26.4  | 27          | 8.             |                | 658.2     |        |          | :       | sse.         |
| о.зо р. ш              | 008.2            | 20.4  | 27          | 8.             | 1,137          | 008. Z    | 26. 4  | 27       | 6.7     | 5.           |

Aug. 1, 1913.—One captive balloon was used; capacity, 28.6 cu.m. Cu. Nb., from the west, decreased from 5/10 to a few. Light rain fell for about two minutes at 9.35 p. m.

Aug. 2, 1913.—One captive balloon was used; capacity, 31.1 cu.m. St. Cu., from the south, decreased from 6/10 to a few.

Aug. 3, 1913.—One captive balloon was used; capacity, 31.1 cu.m. 1/10
 Cu., direction unknown, disappeared before the end of the ascension.
 Aug. 4, 1913.—One captive balloon was used; capacity, 31.1 cu.m.
 The sky was cloudless.

perature changed but little at upper levels and increased somewhat at the surface.

The absolute humidity (fig. 14) diminished rapidly from the surface to the altitude at which the highest temperature was recorded. Above this, on August 2, the only night in which a record of humidity at higher levels was obtained, it diminished slowly.



Fig. 14.—Absolute humidity gradients, grams per cubic meter, above Lone Pine, Cal., August 1, 2, and 3, 1913.

Table 14.—Temperature differences at 100-meter intervals above Lone Pine, Cal., Aug. 1-4, 1913.

|               |       |       |      |       | Alti       | itude | (met       | ers). |        |            |       |       |
|---------------|-------|-------|------|-------|------------|-------|------------|-------|--------|------------|-------|-------|
| Observations. | 100   | 200   | 300  | 400   | 500        | 600   | 700        | 800   | 900    | 1,000      | 1,100 | 1 200 |
| Lug. 1, 1913: |       |       |      |       |            |       |            |       |        |            |       |       |
| Ascent        | -4.8  | -1.5  | -0.1 |       |            |       |            |       |        |            |       | l     |
| Descent       | -5.7  | -0.3  | -0.3 |       |            |       |            |       |        |            |       |       |
| Lug. 2, 1913: |       | 1 .   | Į.   | i     |            |       |            |       | 1      | 1          |       |       |
| Ascent        | -2.7  | -0.5  | .05  |       | 0.7        | 0.7   | 0.7        | 0.6   |        | 1.2        | 1.2   |       |
| Descent       | -8.3  | 0.1   | 1.1  | 0.8   | 0.8        | -0.2  | 0.4        | 0.7   | 0.8    | 0.7        | 0.8   |       |
| .ug. 3, 1913: |       | į.    | l    |       |            |       | l          | i i   | i .    |            | 1     | ł     |
| Ascent        | -4.2  | l     |      | ١     | l          |       |            |       | l      |            |       | l     |
| lug. 4, 1913: |       | 1     | l    | ,     |            | ĺ     | į .        |       |        |            |       |       |
| Ascent        | -6.2  | -4.3  | 0.7  | 0.7   | 0.7        | 0.7   | 0.6        | 0.7   | l O. 7 | 0.7        | 0.7   | 0.7   |
| Descent       | -1.3  | -1.3  | -1.3 | 0.5   | 0.7<br>1.0 | 0.9   | 0.6<br>1.0 | 0.9   | 0.9    | 0.7<br>0.8 | 0.7   | 0.    |
|               |       | 1     |      | 1     |            | ""    |            |       | 1      | 1          | "     | ١     |
| Means         | -4.74 | -1.30 | 0.10 | 0. 68 | 0. 80      | 0. 52 | 0.68       | 0. 72 | 0.88   | 0.85       | 0.80  | 0.6   |

During the day there was a moderate breeze from the north blowing down the valley. This became very light toward evening, and at about the same time the temperature began to fluctuate, sudden changes of 2° to 5° C. occurring frequently between 6 p. m. and the time of minimum temperature. These fluctuations are well shown in the thermograph records at Independence, Cal. (fig. 15), and in Table 15, which contains observed temperatures and humidities at Lone Pine, Cal. These observations have been referred to by Dr. Wm. R. Blair in his discussion of mountain and valley temperatures (Bull., Mt. Weather obs'y, Washington, 1914, 6: 122) and are in accord with the conclusion there reached that "there is not a stream of cool air past the slope station, but a direct convective interchange between the cool air on the slope and the free air over the valley at the same or slightly lower levels." In general, as shown in Table 15, the lower temperatures were accompanied by the higher absolute humidities.

southerly current aloft, at the same time causes the surface northerly current down the valley.

# THE HORIZONTAL RAINBOW.1

By S. Fujiwhara.

[Dated Central Meteorological Observatory, Tokyo, January 12, 1914.]

The so-called horizontal rainbow has been reported by several scientists. Julius von Hann observed this mysterious optical phenomenon on Lake Constance, and W. R. N. Church has seen it on Loch Lomond. F. Hashimoto observed such a rainbow (or horizontal spectrum) on Lake Suwa in central Japan on the morning of November 3, 1912. On this morning the weather was very clear. He and Count A. Tanaka were then engaged in limnological observation at the shore near Kakuyūkan. Mr. Hashimoto saw the rainbow on the water surface of the northeastern part of the lake. They at first observed the bow with their eyes at a height of 9 feet



Fig. 15.—Thermograph record (°F.), at Independence, Cal., August 3-6, incl., 1913, showing fluctuations in temperature during nighttime.

Table 15.—Fluctuations in surface temperature and humidity at Lone Pine, Cal., Aug. 2 and 3, 1913.

| Date.  | Time.                | Tem-<br>perature.       | Relative<br>humid-<br>ity.             | Absolute<br>humid-<br>ity.        |
|--------|----------------------|-------------------------|----------------------------------------|-----------------------------------|
| 1913.  | P. m.                | °C.<br>22. 2            | Per cent.                              | g/cu. m.                          |
| Aug. 2 | 7:48<br>7:51<br>8:01 | 20.6                    | 56<br>64<br>56<br>75                   | 9.3<br>9.9<br>10.6<br>9.6<br>10.6 |
|        | 8:01                 | 19.4                    | 64                                     | 10.6                              |
|        | 8:45                 | 20. 0<br>16. 7<br>18. 7 | 56                                     | 9.6                               |
|        | 9:10                 | 16.7                    | 75                                     | 10.6                              |
|        | 9:21                 | 18.7                    | 64                                     | 10.2                              |
|        | 10:01                | 16.7<br>18.3            | 75                                     | 10.6                              |
|        | 11:00                | 18.3                    | 75<br>62<br>77                         | 9.0                               |
|        | 11:05                | 16.4<br>18.9            | 60                                     | 10.7                              |
|        | 11:48<br>6:50        | 18.9                    |                                        | 9.2                               |
| Aug. 3 | 7:40                 | 25. 1<br>21. 1          | 56                                     | 10.2                              |
|        | 7:50                 | 19.4                    | 56                                     | 9.3                               |
|        | 8:05                 | 19.4<br>20.8            | 45                                     | 8.1                               |
|        | 8:37                 | 19.4                    | 40<br>56<br>56<br>45<br>58<br>42<br>34 | 9. 5<br>8. 1<br>8. 6<br>7. 7      |
|        | 9:09                 | 21. 1                   | 42                                     | 7.7                               |
|        | 9:33                 | 23.9                    | 34                                     | 7.3<br>8.8                        |
|        | 9:43                 | 21.8                    | 47                                     | 8.5                               |

Between 8 and 10:30 p. m. it was necessary to bring the balloon down because of southerly or southeasterly winds aloft. These winds gradually extended toward the surface and were warm and dry (Table 13). The mixing of the upper southerly and the lower northerly currents seems to account for the variations in surface temperature and humidity already referred to.

The fact that the upper southerly wind is warm and dry suggests the probability that it originates over the Mohave Desert, which is about 150 kilometers south of Lone Pine. The heating and consequent rising of air over the desert in the daytime, which gives rise to the

above the water level. On bringing their eyes down to the height of 6 feet the length of the bow diminished, but the colors became very distinct. By lowering their eyes the bow became clearer, and at last, at a height of a little lower than 4 feet, it vanished. At any height lower than this they could no more see the bow, but above this height the bow was seen. As the sun rose higher the bow shifted to the right and vanished from them at 11 a.m., while standing on the shore; soon they went up the stairs of an inn near by, and thence they could perceive the bow, though indistinctly. The position of the lake and features of the bow on this occasion were as shown in figure 1. About 8 a. m. on December 8, 1913, Mr. Hashimoto again observed a similar phenomenon on the same lake. At this time he was in a boat making limnological observations. In his letter to me he states the results of his observations. On the morning in question the surface temperature of the water of the lake was 8° C. and that of the air was about 3° C. He also observed a very thin haze or mist over the surface of the lake and the air was very calm. The optical conditions on Decem-ber 8, 1913, are presented in figure 2, where the plane of the figure presents the surface of the lake water; OS' is the horizontal projection of the sun's ray passing through O, the position of the observer, Mr. Hashimoto. OV and OR are the limiting rays of the horizontal rainbow RV. The angle ROV has been estimated at about 3°, and the horizontal angle VOS at 38°. The violet side of the bow is indicated by OV and the red side by OR.

<sup>1</sup> Revised and reprinted from Jour. met. soc. Japan, Tokyo, March, 1914.